Chapter 13 Additional and Advanced Exercises

Applications

1. A straight river is 100 m wide. A rowboat leaves the far shore at time t = 0. The person in the boat rows at a rate of 20 m/min, always toward the near shore. The velocity of the river at (x, y) is

$$\mathbf{v} = \left(-\frac{1}{250}(y - 50)^2 + 10\right)\mathbf{i} \,\mathrm{m/min}, \quad 0 < y < 100.$$

- **a.** Given that $\mathbf{r}(0) = 0\mathbf{i} + 100\mathbf{j}$, what is the position of the boat at time *t*?
- **b.** How far downstream will the boat land on the near shore?

2. A straight river is 20 m wide. The velocity of the river at (x, y) is

$$\mathbf{v} = -\frac{3x(20-x)}{100}\mathbf{j}$$
 m/min, $0 \le x \le 20$.

A boat leaves the shore at (0, 0) and travels through the water with a constant velocity. It arrives at the opposite shore at (20, 0). The speed of the boat is always $\sqrt{20}$ m/min.

- **a.** Find the velocity of the boat.
- **b.** Find the location of the boat at time *t*.
- **c.** Sketch the path of the boat.

3. A frictionless particle *P*, starting from rest at time t = 0 at the point (a, 0, 0), slides down the helix

$$\mathbf{r}(\theta) = (a\cos\theta)\mathbf{i} + (a\sin\theta)\mathbf{j} + b\theta\mathbf{k} \quad (a, b > 0)$$

under the influence of gravity, as in the accompanying figure. The θ in this equation is the cylindrical coordinate θ and the helix is the curve $r = a, z = b\theta, \theta \ge 0$, in cylindrical coordinates. We assume θ to be a differentiable function of *t* for the motion. The law of conservation of energy tells us that the particle's speed after it has fallen straight down a distance *z* is $\sqrt{2gz}$, where *g* is the constant acceleration of gravity.

- **a.** Find the angular velocity $d\theta/dt$ when $\theta = 2\pi$.
- **b.** Express the particle's θ and *z*-coordinates as functions of *t*.
- **c.** Express the tangential and normal components of the velocity $d\mathbf{r}/dt$ and acceleration $d^2\mathbf{r}/dt^2$ as functions of *t*. Does the acceleration have any nonzero component in the direction of the binormal vector **B**?

- **4.** Suppose the curve in Exercise 3 is replaced by the conical helix $r = a\theta$, $z = b\theta$ shown in the accompanying figure.
 - **a.** Express the angular velocity $d\theta/dt$ as a function of θ .
 - **b.** Express the distance the particle travels along the helix as a function of θ .

Polar Coordinate Systems and Motion in Space

5. Deduce from the orbit equation

$$r = \frac{(1+e)r_0}{1+e\cos\theta}$$

that a planet is closest to its sun when $\theta = 0$ and show that $r = r_0$ at that time.

6. A Kepler equation The problem of locating a planet in its orbit at a given time and date eventually leads to solving "Kepler" equations of the form

$$f(x) = x - 1 - \frac{1}{2}\sin x = 0$$

- **a.** Show that this particular equation has a solution between x = 0 and x = 2.
- **b.** With your computer or calculator in radian mode, use Newton's method to find the solution to as many places as you can.
- **7.** In Section 13.6, we found the velocity of a particle moving in the plane to be

$$\mathbf{v} = \dot{x}\,\mathbf{i} + \dot{y}\,\mathbf{j} = \dot{r}\,\mathbf{u}_r + r\,\dot{\theta}\,\mathbf{u}_\theta$$

- **a.** Express \dot{x} and \dot{y} in terms of \dot{r} and $r\dot{\theta}$ by evaluating the dot products $\mathbf{v} \cdot \mathbf{i}$ and $\mathbf{v} \cdot \mathbf{j}$.
- **b.** Express \dot{r} and $r\dot{\theta}$ in terms of \dot{x} and \dot{y} by evaluating the dot products $\mathbf{v} \cdot \mathbf{u}_r$ and $\mathbf{v} \cdot \mathbf{u}_{\theta}$.
- 8. Express the curvature of a twice-differentiable curve $r = f(\theta)$ in the polar coordinate plane in terms of f and its derivatives.
- **9.** A slender rod through the origin of the polar coordinate plane rotates (in the plane) about the origin at the rate of 3 rad/min. A beetle starting from the point (2, 0) crawls along the rod toward the origin at the rate of 1 in./min.
 - **a.** Find the beetle's acceleration and velocity in polar form when it is halfway to (1 in. from) the origin.
- **b.** To the nearest tenth of an inch, what will be the length of the path the beetle has traveled by the time it reaches the origin?
- **10.** Conservation of angular momentum Let $\mathbf{r}(t)$ denote the position in space of a moving object at time *t*. Suppose the force acting on the object at time *t* is

$$\mathbf{F}(t) = -\frac{c}{|\mathbf{r}(t)|^3} \mathbf{r}(t),$$

where c is a constant. In physics the **angular momentum** of an object at time t is defined to be $\mathbf{L}(t) = \mathbf{r}(t) \times m\mathbf{v}(t)$, where m is the mass of the object and $\mathbf{v}(t)$ is the velocity. Prove that angular momentum is a conserved quantity; i.e., prove that $\mathbf{L}(t)$ is a constant vector, independent of time. Remember Newton's law $\mathbf{F} = m\mathbf{a}$. (This is a calculus problem, not a physics problem.)

Cylindrical Coordinate Systems

11. Unit vectors for position and motion in cylindrical coordinates When the position of a particle moving in space is given in cylindrical coordinates, the unit vectors we use to describe its position and motion are

$$\mathbf{u}_r = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}, \qquad \mathbf{u}_\theta = -(\sin \theta)\mathbf{i} + (\cos \theta)\mathbf{j},$$

and **k** (see accompanying figure). The particle's position vector is then $\mathbf{r} = r \mathbf{u}_r + z \mathbf{k}$, where *r* is the positive polar distance coordinate of the particle's position.

- **a.** Show that $\mathbf{u}_r, \mathbf{u}_{\theta}$, and \mathbf{k} , in this order, form a right-handed frame of unit vectors.
- **b.** Show that

$$\frac{d\mathbf{u}_r}{d\theta} = \mathbf{u}_{\theta}$$
 and $\frac{d\mathbf{u}_{\theta}}{d\theta} = -\mathbf{u}_r$.

c. Assuming that the necessary derivatives with respect to t exist, express $\mathbf{v} = \dot{\mathbf{r}}$ and $\mathbf{a} = \dot{\mathbf{r}}$ in terms of \mathbf{u}_r , \mathbf{u}_θ , \mathbf{k} , \dot{r} , and $\dot{\theta}$. (The dots indicate derivatives with respect to t: $\dot{\mathbf{r}}$ means $d\mathbf{r}/dt$, $\ddot{\mathbf{r}}$ means $d^2\mathbf{r}/dt^2$, and so on.) Section 13.6 derives these formulas and shows how the vectors mentioned here are used in describing planetary motion.

12. Arc length in cylindrical coordinates

- **a.** Show that when you express $ds^2 = dx^2 + dy^2 + dz^2$ in terms of cylindrical coordinates, you get $ds^2 = dr^2 + r^2 d\theta^2 + dz^2$.
- **b.** Interpret this result geometrically in terms of the edges and a diagonal of a box. Sketch the box.
- **c.** Use the result in part (a) to find the length of the curve $r = e^{\theta}, z = e^{\theta}, 0 \le \theta \le \theta \ln 8$.