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Chapter 13 Additional and Advanced Exercises

Applications
1. A straight river is 100 m wide. A rowboat leaves the far shore at

time The person in the boat rows at a rate of 20 m min,
always toward the near shore. The velocity of the river at (x, y) is

a. Given that what is the position of the boat
at time t?

b. How far downstream will the boat land on the near shore?

x

y

100

0 Near shore

Far shore

rs0d = 0i + 100j,

v = a- 1
250

 s y - 50d2
+ 10b i m>min, 0 6 y 6 100.

>t = 0.

2. A straight river is 20 m wide. The velocity of the river at (x, y) is

A boat leaves the shore at (0, 0) and travels through the water with
a constant velocity. It arrives at the opposite shore at (20, 0). The
speed of the boat is always 

a. Find the velocity of the boat.

b. Find the location of the boat at time t.

c. Sketch the path of the boat.
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y

0 20

220 m>min.

v = -

3xs20 - xd
100

 j m>min, 0 … x … 20.
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3. A frictionless particle P, starting from rest at time at the
point (a, 0, 0), slides down the helix

under the influence of gravity, as in the accompanying figure. The
in this equation is the cylindrical coordinate and the helix is

the curve in cylindrical coordinates. We
assume to be a differentiable function of t for the motion. The
law of conservation of energy tells us that the particle’s speed

after it has fallen straight down a distance z is where g is
the constant acceleration of gravity.

a. Find the angular velocity when 

b. Express the particle’s and z-coordinates as functions of t.

c. Express the tangential and normal components of the velocity
dr dt and acceleration as functions of t. Does the
acceleration have any nonzero component in the direction of
the binormal vector B?

4. Suppose the curve in Exercise 3 is replaced by the conical helix
shown in the accompanying figure.

a. Express the angular velocity as a function of 

b. Express the distance the particle travels along the helix as a
function of 

P

Conical helix
r � a�, z � b�

Positive z-axis points down.

Cone z �    rb
a

x

y

z

u .

u .du>dt

r = au, z = bu
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y

z

a

P

r

The helix
r � a, z � b�

Positive z-axis
points down.

d2r>dt2>
u-

u = 2p .du>dt

22gz ,

u

r = a, z = bu, u Ú 0,
uu

rsud = sa cos udi + sa sin udj + buk sa, b 7 0d

t = 0 Polar Coordinate Systems and Motion in Space
5. Deduce from the orbit equation

that a planet is closest to its sun when and show that 
at that time.

6. A Kepler equation The problem of locating a planet in its orbit
at a given time and date eventually leads to solving “Kepler”
equations of the form

a. Show that this particular equation has a solution between
and 

b. With your computer or calculator in radian mode, use
Newton’s method to find the solution to as many places as
you can.

7. In Section 13.6, we found the velocity of a particle moving in the
plane to be

a. Express and in terms of and by evaluating the dot
products and 

b. Express and in terms of and by evaluating the dot
products and 

8. Express the curvature of a twice-differentiable curve in
the polar coordinate plane in terms of ƒ and its derivatives.

9. A slender rod through the origin of the polar coordinate plane ro-
tates (in the plane) about the origin at the rate of 3 rad min. A
beetle starting from the point (2, 0) crawls along the rod toward
the origin at the rate of 1 in. min.

a. Find the beetle’s acceleration and velocity in polar form when
it is halfway to (1 in. from) the origin.

b. To the nearest tenth of an inch, what will be the length of the
path the beetle has traveled by the time it reaches the origin?

10. Conservation of angular momentum Let r(t) denote the posi-
tion in space of a moving object at time t. Suppose the force act-
ing on the object at time t is

where c is a constant. In physics the angular momentum of an
object at time t is defined to be where m
is the mass of the object and v(t) is the velocity. Prove that an-
gular momentum is a conserved quantity; i.e., prove that L(t) is
a constant vector, independent of time. Remember Newton’s
law (This is a calculus problem, not a physics
problem.)

F = ma.

Lstd = rstd * mvstd ,

Fstd = -

c

ƒ rstd ƒ
3 rstd ,

>
>

r = ƒsud
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Cylindrical Coordinate Systems
11. Unit vectors for position and motion in cylindrical coordi-

nates When the position of a particle moving in space is given
in cylindrical coordinates, the unit vectors we use to describe its
position and motion are

and k (see accompanying figure). The particle’s position vector is
then where r is the positive polar distance coordi-
nate of the particle’s position.

y

z

x

k

r

u�

ur

z

r

(r, �, 0)

�

0

r = r ur + z k,

ur = scos udi + ssin udj, uu = -ssin udi + scos udj,

a. Show that and k, in this order, form a right-handed
frame of unit vectors.

b. Show that

c. Assuming that the necessary derivatives with respect to t
exist, express and in terms of and 
(The dots indicate derivatives with respect to means

means and so on.) Section 13.6 derives
these formulas and shows how the vectors mentioned here are
used in describing planetary motion.

12. Arc length in cylindrical coordinates

a. Show that when you express in
terms of cylindrical coordinates, you get 

b. Interpret this result geometrically in terms of the edges and a
diagonal of a box. Sketch the box.

c. Use the result in part (a) to find the length of the curve
r = eu, z = eu, 0 … u … u ln 8 .

r2 du2
+ dz2 .

ds2
= dr2

+

ds2
= dx2

+ dy2
+ dz2

d2r>dt2 ,dr>dt, r$
t: r#

u
#

.ur, uu, k, r
#
,a = r$v = r#

dur

du
= uu and 

duu
du

= -ur .

ur, uu ,
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