
OVERVIEW In studying a real-world phenomenon, a quantity being investigated usually
depends on two or more independent variables. So we need to extend the basic ideas of the
calculus of functions of a single variable to functions of several variables. Although the
calculus rules remain essentially the same, the calculus is even richer. The derivatives of
functions of several variables are more varied and more interesting because of the different
ways in which the variables can interact. Their integrals lead to a greater variety of appli-
cations. The studies of probability, statistics, fluid dynamics, and electricity, to mention
only a few, all lead in natural ways to functions of more than one variable.

965

PARTIAL DERIVATIVES

C h a p t e r

14

Functions of Several Variables

Many functions depend on more than one independent variable. The function 
calculates the volume of a right circular cylinder from its radius and height. The function

calculates the height of the paraboloid above the point
P(x, y) from the two coordinates of P. The temperature T of a point on Earth’s surface
depends on its latitude x and longitude y, expressed by writing In this sec-
tion, we define functions of more than one independent variable and discuss ways to
graph them.

Real-valued functions of several independent real variables are defined much the way
you would imagine from the single-variable case. The domains are sets of ordered pairs
(triples, quadruples, n-tuples) of real numbers, and the ranges are sets of real numbers of
the kind we have worked with all along.

T = ƒsx, yd.

z = x 2
+ y 2ƒsx, yd = x 2

+ y 2

V = pr 2h

14.1

DEFINITIONS Function of n Independent Variables
Suppose D is a set of n-tuples of real numbers A real-valued
function ƒ on D is a rule that assigns a unique (single) real number

to each element in D. The set D is the function’s domain. The set of w-values
taken on by ƒ is the function’s range. The symbol w is the dependent variable
of ƒ, and ƒ is said to be a function of the n independent variables to We
also call the ’s the function’s input variables and call w the function’s output
variable.

xj

xn.x1

w = ƒsx1, x2, Á , xnd

sx1, x2, Á , xnd.
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If ƒ is a function of two independent variables, we usually call the independent vari-
ables x and y and picture the domain of ƒ as a region in the xy-plane. If ƒ is a function of
three independent variables, we call the variables x, y, and z and picture the domain as a
region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To
say that the volume of a right circular cylinder is a function of its radius and height, we
might write To be more specific, we might replace the notation ƒ(r, h) by the
formula that calculates the value of V from the values of r and h, and write In
either case, r and h would be the independent variables and V the dependent variable of
the function.

As usual, we evaluate functions defined by formulas by substituting the values of the in-
dependent variables in the formula and calculating the corresponding value of the dependent
variable.

EXAMPLE 1 Evaluating a Function

The value of at the point (3, 0, 4) is

From Section 12.1, we recognize ƒ as the distance function from the origin to the point
(x, y, z) in Cartesian space coordinates.

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding
inputs that lead to complex numbers or division by zero. If cannot
be less than If cannot be zero. The domain of a function is as-
sumed to be the largest set for which the defining rule generates real numbers, unless the
domain is otherwise specified explicitly. The range consists of the set of output values for
the dependent variable.

EXAMPLE 2(a) Functions of Two Variables

Function Domain Range

Entire plane

(b) Functions of Three Variables

Function Domain Range

Entire space

Half-space s - q , q dz 7 0w = xy ln z

s0, q dsx, y, zd Z s0, 0, 0dw =
1

x 2
+ y 2

+ z 2

[0, q dw = 2x 2
+ y 2

+ z 2

[-1, 1]w = sin xy

s - q , 0d ´ s0, q dxy Z 0w =
1
xy

[0, q dy Ú x 2w = 2y - x 2

ƒsx, yd = 1>sxyd, xyx 2.
ƒsx, yd = 2y - x 2, y

ƒs3, 0, 4d = 2s3d2
+ s0d2

+ s4d2
= 225 = 5.

ƒsx, y, zd = 2x 2
+ y 2

+ z 2

V = pr 2h.
V = ƒsr, hd.
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Functions of Two Variables

Regions in the plane can have interior points and boundary points just like intervals on the
real line. Closed intervals [a, b] include their boundary points, open intervals (a, b) don’t
include their boundary points, and intervals such as [a, b) are neither open nor closed.

14.1 Functions of Several Variables 967

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

FIGURE 14.1 Interior points and
boundary points of a plane region R. An
interior point is necessarily a point of R. A
boundary point of R need not belong to R.

DEFINITIONS Interior and Boundary Points, Open, Closed
A point in a region (set) R in the xy-plane is an interior point of R if it is
the center of a disk of positive radius that lies entirely in R (Figure 14.1). A point

is a boundary point of R if every disk centered at contains points
that lie outside of R as well as points that lie in R. (The boundary point itself need
not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary
points (Figure 14.2).

sx0, y0dsx0, y0d

sx0, y0d

y

x
0

y

x
0

y

x
0

{(x, y) � x2 � y2 � 1}
Open unit disk.
Every point an
interior point.

{(x, y) � x2 � y2 � 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) � x2 � y2 � 1}
Closed unit disk.
Contains all
boundary points.

FIGURE 14.2 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS Bounded and Unbounded Regions in the Plane
A region in the plane is bounded if it lies inside a disk of fixed radius. A region
is unbounded if it is not bounded.

As with intervals of real numbers, some regions in the plane are neither open nor
closed. If you start with the open disk in Figure 14.2 and add to it some of but not all its
boundary points, the resulting set is neither open nor closed. The boundary points that are
there keep the set from being open. The absence of the remaining boundary points keeps
the set from being closed.

Examples of bounded sets in the plane include line segments, triangles, interiors of
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants,
half-planes, and the plane itself.
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EXAMPLE 3 Describing the Domain of a Function of Two Variables

Describe the domain of the function 

Solution Since ƒ is defined only where the domain is the closed,
unbounded region shown in Figure 14.3. The parabola is the boundary of the
domain. The points above the parabola make up the domain’s interior.

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ƒ(x, y). One is to draw
and label curves in the domain on which ƒ has a constant value. The other is to sketch
the surface in space.z = ƒsx, yd

y = x 2
y - x2

Ú 0,

ƒsx, yd = 2y - x 2.
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y

x
0 1–1

1

Interior points,
where y � x2 � 0

The parabola
y � x2 � 0
is the boundary.

Outside,
y � x2 � 0

FIGURE 14.3 The domain of
consists of the shaded

region and its bounding parabola 
(Example 3).

y = x 2
ƒsx, yd = 2y - x 2

EXAMPLE 4 Graphing a Function of Two Variables

Graph and plot the level curves and
in the domain of ƒ in the plane.

Solution The domain of ƒ is the entire xy-plane, and the range of ƒ is the set of real
numbers less than or equal to 100. The graph is the paraboloid a por-
tion of which is shown in Figure 14.4.

The level curve is the set of points in the xy-plane at which

which is the circle of radius 10 centered at the origin. Similarly, the level curves
and (Figure 14.4) are the circles

The level curve consists of the origin alone. (It is still a level curve.)

The curve in space in which the plane cuts a surface is made up of the
points that represent the function value It is called the contour curve

to distinguish it from the level curve in the domain of ƒ. Figure 14.5
shows the contour curve on the surface defined by the
function The contour curve lies directly above the circle

which is the level curve in the function’s domain.
Not everyone makes this distinction, however, and you may wish to call both kinds of

curves by a single name and rely on context to convey which one you have in mind. On
most maps, for example, the curves that represent constant elevation (height above sea
level) are called contours, not level curves (Figure 14.6).

ƒsx, yd = 75x 2
+ y 2

= 25,
ƒsx, yd = 100 - x 2

- y 2.
z = 100 - x 2

- y 2ƒsx, yd = 75
ƒsx, yd = cƒsx, yd = c

ƒsx, yd = c.
z = ƒsx, ydz = c

ƒsx, yd = 100

 ƒsx, yd = 100 - x 2
- y 2

= 75, or x 2
+ y 2

= 25.

 ƒsx, yd = 100 - x 2
- y 2

= 51, or x 2
+ y 2

= 49

ƒsx, yd = 75ƒsx, yd = 51

ƒsx, yd = 100 - x 2
- y 2

= 0, or x 2
+ y 2

= 100,

ƒsx, yd = 0

z = 100 - x 2
- y 2,

ƒsx, yd = 75
ƒsx, yd = 0, ƒsx, yd = 51,ƒsx, yd = 100 - x 2

- y 2

y

z

x

10
10

100

f (x, y) � 75

f (x, y) � 0

f (x, y) � 51
(a typical
level curve in
the function’s
domain)

The surface
z � f (x, y)
  � 100 � x2 � y2

is the graph of f.

FIGURE 14.4 The graph and selected
level curves of the function

(Example 4).ƒsx, yd = 100 - x2
- y2

DEFINITIONS Level Curve, Graph, Surface
The set of points in the plane where a function ƒ(x, y) has a constant value

is called a level curve of ƒ. The set of all points (x, y, ƒ(x, y)) in
space, for (x, y) in the domain of ƒ, is called the graph of ƒ. The graph of ƒ is
also called the surface z � f sx, yd.

ƒsx, yd = c
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z

x

0

y

75

100

The contour curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the plane z � 75. 

Plane z � 75

The level curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the xy-plane.

z � 100 � x2 � y2

FIGURE 14.5 A plane parallel to
the xy-plane intersecting a surface

produces a contour curve.z = ƒsx, yd

z = c

DEFINITION Level Surface
The set of points (x, y, z) in space where a function of three independent variables
has a constant value is called a level surface of ƒ.ƒsx, y, zd = c

FIGURE 14.6 Contours on Mt. Washington in New Hampshire. (Reproduced by permission
from the Appalachian Mountain Club.)

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant
value make a curve in the function’s domain. In space, the points where a
function of three independent variables has a constant value make a surface
in the function’s domain.

ƒsx, y, zd = c
ƒsx, yd = c

Since the graphs of functions of three variables consist of points (x, y, z, ƒ(x, y, z)) lying
in a four-dimensional space, we cannot sketch them effectively in our three-dimensional
frame of reference. We can see how the function behaves, however, by looking at its three-
dimensional level surfaces.

EXAMPLE 5 Describing Level Surfaces of a Function of Three Variables

Describe the level surfaces of the function

ƒsx, y, zd = 2x 2
+ y 2

+ z 2 .
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Solution The value of ƒ is the distance from the origin to the point (x, y, z). Each level sur-

face is a sphere of radius c centered at the origin. Figure 14.7

shows a cutaway view of three of these spheres. The level surface 
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the func-
tion’s domain. The level surfaces show how the function’s values change as we move
through its domain. If we remain on a sphere of radius c centered at the origin, the function
maintains a constant value, namely c. If we move from one sphere to another, the func-
tion’s value changes. It increases if we move away from the origin and decreases if we
move toward the origin. The way the values change depends on the direction we take. The
dependence of change on direction is important. We return to it in Section 14.5.

The definitions of interior, boundary, open, closed, bounded, and unbounded for re-
gions in space are similar to those for regions in the plane. To accommodate the extra di-
mension, we use solid balls of positive radius instead of disks.

2x 2
+ y 2

+ z 2
= 0

2x 2
+ y 2

+ z 2
= c, c 7 0 ,
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DEFINITIONS Interior and Boundary Points for Space Regions
A point in a region R in space is an interior point of R if it is the cen-
ter of a solid ball that lies entirely in R (Figure 14.8a). A point is a
boundary point of R if every sphere centered at encloses points that
lie outside of R as well as points that lie inside R (Figure 14.8b). The interior of
R is the set of interior points of R. The boundary of R is the set of boundary
points of R.

A region is open if it consists entirely of interior points. A region is closed if
it contains its entire boundary.

sx0 , y0 , z0d
sx0 , y0 , z0d

sx0 , y0 , z0d

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)

FIGURE 14.8 Interior points and
boundary points of a region in space.

Examples of open sets in space include the interior of a sphere, the open half-space
the first octant (where x, y, and z are all positive), and space itself.

Examples of closed sets in space include lines, planes, the closed half-space 
the first octant together with its bounding planes, and space itself (since it has no bound-
ary points).

A solid sphere with part of its boundary removed or a solid cube with a missing face,
edge, or corner point would be neither open nor closed.

Functions of more than three independent variables are also important. For example,
the temperature on a surface in space may depend not only on the location of the point
P(x, y, z) on the surface, but also on time t when it is visited, so we would write 

Computer Graphing

Three-dimensional graphing programs for computers and calculators make it possible to
graph functions of two variables with only a few keystrokes. We can often get information
more quickly from a graph than from a formula.

ƒsx, y, z, td.
T =

z Ú 0,
z 7 0,

x

y

z

1
2

3

�x2 � y2 � z2 � 3

�x2 � y2 � z2 � 2

�x2 � y2 � z2 � 1

FIGURE 14.7 The level surfaces of
are

concentric spheres (Example 5).
ƒsx, y, zd = 2x2

+ y2
+ z2
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EXAMPLE 6 Modeling Temperature Beneath Earth’s Surface

The temperature beneath the Earth’s surface is a function of the depth x beneath the sur-
face and the time t of the year. If we measure x in feet and t as the number of days elapsed
from the expected date of the yearly highest surface temperature, we can model the varia-
tion in temperature with the function

(The temperature at 0 ft is scaled to vary from to so that the variation at x feet can
be interpreted as a fraction of the variation at the surface.)

Figure 14.9 shows a computer-generated graph of the function. At a depth of 15 ft, the
variation (change in vertical amplitude in the figure) is about 5% of the surface variation.
At 30 ft, there is almost no variation during the year.

-1 ,+1

w = cos s1.7 * 10-2t - 0.2xde-0.2x.

14.1 Functions of Several Variables 971

Days

15
30

t
x

w

Depth, ft

T
em

pe
ra

tu
re

FIGURE 14.9 This computer-generated graph
of

shows the seasonal variation of the temperature
belowground as a fraction of surface
temperature. At the variation is only
5% of the variation at the surface. At 
the variation is less than 0.25% of the surface
variation (Example 6). (Adapted from art
provided by Norton Starr.)

x = 30 ft,
x = 15 ft,

w = cos s1.7 * 10-2t - 0.2xde-0.2x

The graph also shows that the temperature 15 ft below the surface is about half a
year out of phase with the surface temperature. When the temperature is lowest on the
surface (late January, say), it is at its highest 15 ft below. Fifteen feet below the ground,
the seasons are reversed.

Figure 14.10 shows computer-generated graphs of a number of functions of two variables
together with their level curves.
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z

y

x

(b)  z � sin x � 2 sin y

x

y

y

z

x

(c)  z � (4x2 � y2)e–x2�y2

x

y

x

z

y

(d)  z � xye–y2

x

y

FIGURE 14.10 Computer-generated graphs and level surfaces of typical functions
of two variables.

y

z

x

(a)  z � e – (x2 � y2)/8(sin x2 � cos y2)

x

y
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