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Limits and Continuity in Higher Dimensions

This section treats limits and continuity for multivariable functions. The definition of the
limit of a function of two or three variables is similar to the definition of the limit of a
function of a single variable but with a crucial difference, as we now see.

Limits

If the values of ƒ(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-
ficiently close to a point we say that ƒ approaches the limit L as (x, y) approaches

This is similar to the informal definition for the limit of a function of a single vari-
able. Notice, however, that if lies in the interior of ƒ’s domain, (x, y) can approach

from any direction. The direction of approach can be an issue, as in some of the
examples that follow.
sx0, y0d

sx0, y0d
sx0, y0d.

sx0, y0d,

14.2

DEFINITION Limit of a Function of Two Variables
We say that a function ƒ(x, y) approaches the limit L as (x, y) approaches 
and write

if, for every number there exists a corresponding number such that
for all (x, y) in the domain of ƒ,

ƒ ƒsx, yd - L ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.

d 7 0P 7 0,

lim
sx, yd: sx0, y0d

 ƒsx, yd = L

sx0, y0d,

The definition of limit says that the distance between ƒ(x, y) and L becomes arbitrarily
small whenever the distance from (x, y) to is made sufficiently small (but not 0).

The definition of limit applies to boundary points as well as interior points of
the domain of ƒ. The only requirement is that the point (x, y) remain in the domain at all
times. It can be shown, as for functions of a single variable, that

For example, in the first limit statement above, and Using the defini-
tion of limit, suppose that is chosen. If we let equal this we see that

implies

 ƒ ƒsx, yd - x0 ƒ 6 P

 ƒ x - x0 ƒ 6 P

 0 6 2sx - x0d2
6 P

0 6 2sx - x0d2
+ sy - y0d2

6 d = P

P,dP 7 0
L = x0.ƒsx, yd = x

 lim
sx, yd: sx0, y0d

 k = k sany number kd.

 lim
sx, yd: sx0, y0d

 y = y0

 lim
sx, yd: sx0, y0d

 x = x0

sx0, y0d
sx0, y0d

2a2
= ƒ a ƒ

x = ƒsx, yd
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That is,

So

It can also be shown that the limit of the sum of two functions is the sum of their lim-
its (when they both exist), with similar results for the limits of the differences, products,
constant multiples, quotients, and powers.

lim
sx, yd: sx0 , y0d

 ƒsx, yd = lim
sx, yd: sx0 , y0d

 x = x0.

ƒ ƒsx, yd - x0 ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.
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THEOREM 1 Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule:

6. Power Rule: If r and s are integers with no common factors, and 
then

provided is a real number. (If s is even, we assume that )L 7 0.Lr>s
lim

sx, yd: sx0 , y0d
sƒsx, yddr>s

= Lr>s

s Z 0,

lim
sx, yd: sx0 , y0d 

 
ƒsx, yd
gsx, yd

=
L
M
 M Z 0

lim
sx, yd: sx0 , y0d

 skƒsx, ydd = kL sany number kd

lim
sx, yd: sx0, y0d

 sƒsx, yd # gsx, ydd = L # M

lim
sx, yd: sx0 , y0d

(ƒsx, yd - gsx, ydd = L - M

lim
sx, yd: sx0 , y0d

(ƒsx, yd + gsx, ydd = L + M

lim
sx, yd: sx0, y0d

 ƒsx, yd = L and lim
sx, yd: sx0 , y0d

 gsx, yd = M.

While we won’t prove Theorem 1 here, we give an informal discussion of why it’s
true. If (x, y) is sufficiently close to then ƒ(x, y) is close to L and g(x, y) is close to
M (from the informal interpretation of limits). It is then reasonable that 
is close to is close to is close to LM;
kƒ(x, y) is close to kL; and that ƒ(x, y) g(x, y) is close to L M if 

When we apply Theorem 1 to polynomials and rational functions, we obtain the useful
result that the limits of these functions as can be calculated by evaluating the
functions at The only requirement is that the rational functions be defined at 

EXAMPLE 1 Calculating Limits

(a)

(b) lim
sx, yd: s3, -4d

2x 2
+ y 2

= 2s3d2
+ s -4d2

= 225 = 5

lim
sx, yd: s0,1d

  
x - xy + 3

x 2y + 5xy - y 3 =

0 - s0ds1d + 3

s0d2s1d + 5s0ds1d - s1d3 = -3

sx0 , y0d.sx0 , y0d.
sx, yd : sx0 , y0d

M Z 0.>> L - M; ƒsx, ydgsx, ydL + M; ƒsx, yd - gsx, yd
ƒsx, yd + gsx, yd

sx0 , y0d,
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EXAMPLE 2 Calculating Limits

Find

Solution Since the denominator approaches 0 as we can-
not use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by

however, we produce an equivalent fraction whose limit we can find:

We can cancel the factor because the path (along which ) is not
in the domain of the function

EXAMPLE 3 Applying the Limit Definition

Find if it exists.

Solution We first observe that along the line the function always has value 0
when Likewise, along the line the function has value 0 provided So
if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0. To see if
this is true, we apply the definition of limit.

Let be given, but arbitrary. We want to find a such that

or

Since we have that

4 ƒ x ƒ y 2

x 2
+ y 2 … 4 ƒ x ƒ = 42x 2

… 42x 2
+ y 2 .

y 2
… x 2

+ y 2

4 ƒ x ƒ y 2

x 2
+ y 2 6 P whenever 0 6 2x 2

+ y 2
6 d.

` 4xy 2

x 2
+ y 2 - 0 ` 6 P whenever 0 6 2x 2

+ y 2
6 d

d 7 0P 7 0

x Z 0.y = 0,y Z 0.
x = 0,

lim
sx, yd: s0,0d

 
4xy2

x 2
+ y 2

x 2
- xy2x - 2y

.

x - y = 0y = xsx - yd

 = 0 A20 + 20 B = 0

 = lim
sx, yd: s0,0d

 x A2x + 2y B
 = lim

sx, yd: s0,0d
 
x Ax - y B A2x + 2y B

x - y

 lim
sx, yd: s0,0d

 
x 2

- xy2x - 2y
= lim

sx, yd: s0,0d
 
Ax 2

- xy B A2x + 2y B
A2x - 2y B A2x + 2y B

2x + 2y,

sx, yd : s0, 0d,2x - 2y

lim
sx, yd: s0,0d

 
x2

- xy2x - 2y
.
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Cancel the nonzero
factor sx - yd.

Algebra
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So if we choose and let we get

It follows from the definition that

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

lim
sx, yd: s0,0d

 
4xy 2

x 2
+ y 2 = 0.

` 4xy 2

x 2
+ y 2 - 0 ` … 42x 2

+ y 2
6 4d = 4 aP

4
b = P.

0 6 2x2
+ y2

6 d,d = P>4
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DEFINITION Continuous Function of Two Variables
A function ƒ(x, y) is continuous at the point if

1. ƒ is defined at 

2. exists,

3.

A function is continuous if it is continuous at every point of its domain.

lim
sx, yd: sx0, y0d

 ƒsx, yd = ƒsx0, y0d.

lim
sx, yd: sx0, y0d

 ƒsx, yd
sx0, y0d,

(x0, y0)

As with the definition of limit, the definition of continuity applies at boundary points
as well as interior points of the domain of ƒ. The only requirement is that the point (x, y)
remain in the domain at all times.

As you may have guessed, one of the consequences of Theorem 1 is that algebraic com-
binations of continuous functions are continuous at every point at which all the functions in-
volved are defined. This means that sums, differences, products, constant multiples, quotients,
and powers of continuous functions are continuous where defined. In particular, polynomials
and rational functions of two variables are continuous at every point at which they are defined.

EXAMPLE 4 A Function with a Single Point of Discontinuity

Show that

is continuous at every point except the origin (Figure 14.11).

Solution The function ƒ is continuous at any point because its values
are then given by a rational function of x and y.

At (0, 0), the value of ƒ is defined, but ƒ, we claim, has no limit as 
The reason is that different paths of approach to the origin can lead to different results, as
we now see.

sx, yd : s0, 0d.

sx, yd Z s0, 0d

ƒsx, yd = L 2xy

x 2
+ y 2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d

(a)

z

x

y

0

0.8

0.8

1

0

(b)

00.8

0.8

1

–y

–0.8

–1

–0.8

–0.8

–1

–0.8

x

FIGURE 14.11 (a) The graph of

The function is continuous at every point
except the origin. (b) The level curves of ƒ
(Example 4).

ƒsx, yd = L 2xy

x2
+ y2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d.
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For every value of m, the function ƒ has a constant value on the “punctured” line
because

Therefore, ƒ has this number as its limit as (x, y) approaches (0, 0) along the line:

This limit changes with m. There is therefore no single number we may call the limit of
ƒ as (x, y) approaches the origin. The limit fails to exist, and the function is not
continuous.

Example 4 illustrates an important point about limits of functions of two variables (or
even more variables, for that matter). For a limit to exist at a point, the limit must be the
same along every approach path. This result is analogous to the single-variable case where
both the left- and right-sided limits had to have the same value; therefore, for functions of
two or more variables, if we ever find paths with different limits, we know the function has
no limit at the point they approach.

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = mx
d =

2m
1 + m2 .

ƒsx, yd `
y = mx

=

2xy

x 2
+ y 2 `

y = mx
=

2xsmxd
x 2

+ smxd2 =

2mx 2

x 2
+ m2x 2 =

2m
1 + m2 .

y = mx, x Z 0,

980 Chapter 14: Partial Derivatives

Two-Path Test for Nonexistence of a Limit
If a function ƒ(x, y) has different limits along two different paths as (x, y) ap-
proaches then does not exist.limsx, yd:sx0, y0d ƒsx, ydsx0, y0d,

EXAMPLE 5 Applying the Two-Path Test

Show that the function

(Figure 14.12) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the form 0 0.
We examine the values of ƒ along curves that end at (0, 0). Along the curve 

the function has the constant value

Therefore,

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola
for instance, and the limit is 1. If (x, y) approaches (0, 0) along the x-axis,

and the limit is 0. By the two-path test, ƒ has no limit as (x, y) approaches (0, 0).
The language here may seem contradictory. You might well ask, “What do you

mean ƒ has no limit as (x, y) approaches the origin—it has lots of limits.” But that is

k = 0
k = 1y = x 2,

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = k x2

d =

2k
1 + k2 .

ƒsx, yd `
y = kx2

=

2x 2y

x4
+ y 2 `

y = kx2
=

2x 2skx 2d
x4

+ skx 2d2 =

2kx4

x4
+ k 2x 4 =

2k
1 + k 2 .

kx2, x Z 0,
y =

>

ƒsx, yd =

2x 2y

x4
+ y 2

(a)

x

(b)

0

1

–1

y

1

–1

0

0

0

z

x

y

FIGURE 14.12 (a) The graph of
As the graph

suggests and the level-curve values in part
(b) confirm, does not
exist (Example 5).

limsx, yd:s0,0d ƒsx, yd

ƒsx, yd = 2x2y>sx4
+ y2d.

along y = mx

along y = kx2
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the point. There is no single path-independent limit, and therefore, by the definition,
does not exist.

Compositions of continuous functions are also continuous. The proof, omitted here,
is similar to that for functions of a single variable (Theorem 10 in Section 2.6).

limsx, yd:s0,0d ƒsx, yd
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Continuity of Composites
If ƒ is continuous at and g is a single-variable function continuous at

then the composite function defined by 
is continuous at sx0, y0d.

hsx, yd = gsƒsx, yddh = g � fƒsx0, y0d,
sx0, y0d

For example, the composite functions 

are continuous at every point (x, y).
As with functions of a single variable, the general rule is that composites of continu-

ous functions are continuous. The only requirement is that each function be continuous
where it is applied.

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions
about limits and continuity for sums, products, quotients, powers, and composites all ex-
tend to functions of three or more variables. Functions like

are continuous throughout their domains, and limits like

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

We have seen that a function of a single variable that is continuous throughout a closed,
bounded interval [a, b] takes on an absolute maximum value and an absolute minimum
value at least once in [a, b]. The same is true of a function that is continuous
on a closed, bounded set R in the plane (like a line segment, a disk, or a filled-in triangle).
The function takes on an absolute maximum value at some point in R and an absolute min-
imum value at some point in R.

Theorems similar to these and other theorems of this section hold for functions of
three or more variables. A continuous function for example, must take on
absolute maximum and minimum values on any closed, bounded set (solid ball or cube,
spherical shell, rectangular solid) on which it is defined.

We learn how to find these extreme values in Section 14.7, but first we need to study
derivatives in higher dimensions. That is the topic of the next section.

w = ƒsx, y, zd,

z = ƒsx, yd

lim
P: s1,0,-1d

  
e x + z

z 2
+ cos 2xy

=

e1 - 1

s -1d2
+ cos 0

=
1
2

,

ln sx + y + zd and y sin z
x - 1

e x - y,  cos 
xy

x 2
+ 1

, ln s1 + x 2y 2d
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