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Partial Derivatives

The calculus of several variables is basically single-variable calculus applied to several
variables one at a time. When we hold all but one of the independent variables of a
function constant and differentiate with respect to that one variable, we get a “partial”
derivative. This section shows how partial derivatives are defined and interpreted geo-
metrically, and how to calculate them by applying the rules for differentiating functions
of a single variable.

Partial Derivatives of a Function of Two Variables

If is a point in the domain of a function ƒ(x, y), the vertical plane will cut
the surface in the curve (Figure 14.13). This curve is the graph
of the function in the plane The horizontal coordinate in this plane is
x; the vertical coordinate is z. The y-value is held constant at , so y is not a variable.

We define the partial derivative of ƒ with respect to x at the point as the ordi-
nary derivative of with respect to x at the point To distinguish partial de-
rivatives from ordinary derivatives we use the symbol rather than the d previously used.0

x = x0.ƒsx, y0d
sx0, y0d

y0

y = y0.z = ƒsx, y0d
z = ƒsx, y0dz = ƒsx, yd

y = y0sx0 , y0d

14.3
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An equivalent expression for the partial derivative is

The slope of the curve at the point in the plane 
is the value of the partial derivative of ƒ with respect to x at The tangent line to
the curve at P is the line in the plane that passes through P with this slope. The par-
tial derivative at gives the rate of change of ƒ with respect to x when y is held
fixed at the value This is the rate of change of ƒ in the direction of i at 

The notation for a partial derivative depends on what we want to emphasize:

or “Partial derivative of ƒ with respect to x at ” or “ƒ sub
x at ” Convenient for stressing the point 

“Partial derivative of z with respect to x at ”
Common in science and engineering when you are dealing
with variables and do not mention the function explicitly.

or “Partial derivative of ƒ (or z) with respect to x.” Convenient
when you regard the partial derivative as a function in its
own right.

0z
0xƒx, 

0ƒ
0x , zx,

sx0, y0d.0z
0x `

sx0, y0d

sx0, y0d.sx0, y0d.
sx0, y0dƒxsx0, y0d

0ƒ
0x  sx0, y0d

sx0, y0d.y0 .
sx0, y0d0ƒ>0x

y = y0

sx0, y0d.
y = y0Psx0, y0, ƒsx0, y0ddz = ƒsx, y0d

d
dx

 ƒ(x, y0) `
x = x0

.
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x
y

z

0

 

Tangent line

The curve z � f (x, y0)
in the plane y � y0

P(x0, y0, f (x0, y0))

Vertical axis in
the plane y � y0

z � f (x, y)

y0

x0

Horizontal axis in the plane y � y0

(x0 � h,  y0)
(x0, y0)

FIGURE 14.13 The intersection of the plane 
with the surface viewed from above the first
quadrant of the xy-plane.

z = ƒsx, yd,
y = y0

DEFINITION Partial Derivative with Respect to x
The partial derivative of ƒ(x, y) with respect to x at the point is

provided the limit exists.

0ƒ
0x  `

sx0, y0d
= lim

h:0
 
ƒsx0 + h, y0d - ƒsx0, y0d

h
,

sx0, y0d
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The slope of the curve at the point in the vertical plane
(Figure 14.14) is the partial derivative of ƒ with respect to y at The tangent

line to the curve at P is the line in the plane that passes through P with this slope.
The partial derivative gives the rate of change of ƒ with respect to y at when x is
held fixed at the value This is the rate of change of ƒ in the direction of j at 

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

Notice that we now have two tangent lines associated with the surface at
the point (Figure 14.15). Is the plane they determine tangent to the sur-
face at P? We will see that it is, but we have to learn more about partial derivatives before
we can find out why.

Psx0, y0, ƒsx0, y0dd
z = ƒsx, yd

0ƒ
0y  sx0, y0d, ƒysx0, y0d, 0ƒ

0y , ƒy .

sx0, y0d.x0.
sx0, y0d

x = x0

sx0, y0d.x = x0

Psx0, y0, ƒsx0, y0ddz = ƒsx0, yd

The definition of the partial derivative of ƒ(x, y) with respect to y at a point is
similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at
the value and take the ordinary derivative of with respect to y at y0 .ƒsx0, ydx0

sx0, y0d
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DEFINITION Partial Derivative with Respect to y
The partial derivative of ƒ(x, y) with respect to y at the point is

provided the limit exists.

0ƒ
0y  `

sx0, y0d
=

d
dy

 ƒsx0, yd `
y = y0

= lim
h:0

 
ƒsx0, y0 + hd - ƒsx0, y0d

h
,

sx0, y0d

x

z

y

P(x0, y0, f (x0, y0))

y0x0

(x0, y0)

(x0, y0 � k)

The curve z � f (x0, y)
in the plane

x � x0

Horizontal axis
in the plane x � x0

 z � f (x, y)

Tangent line

Vertical axis
in the plane

x � x0

0

FIGURE 14.14 The intersection of the
plane with the surface 
viewed from above the first quadrant of the
xy-plane.

z = ƒsx, yd,x = x0

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z � f (x, y0)
in the plane y � y0

z �  f (x, y)

x � x0y � y0 (x0, y0)

The curve z � f (x0, y)
in the plane x � x0

 P(x0, y0, f (x0, y0))

FIGURE 14.15 Figures 14.13 and 14.14 combined. The tangent
lines at the point determine a plane that, in this
picture at least, appears to be tangent to the surface.

sx0, y0, ƒsx0, y0dd
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Calculations

The definitions of and give us two different ways of differentiating ƒ at a
point: with respect to x in the usual way while treating y as a constant and with respect to y
in the usual way while treating x as constant. As the following examples show, the values
of these partial derivatives are usually different at a given point 

EXAMPLE 1 Finding Partial Derivatives at a Point

Find the values of and at the point if

Solution To find we treat y as a constant and differentiate with respect to x:

The value of at is 
To find we treat x as a constant and differentiate with respect to y:

The value of at is  

EXAMPLE 2 Finding a Partial Derivative as a Function

Find if 

Solution We treat x as a constant and ƒ as a product of y and sin xy:

 = s y cos xyd 
0

0y sxyd + sin xy = xy cos xy + sin xy.

 
0ƒ
0y =

0

0y s y sin xyd = y 
0

0y sin xy + ssin xyd 
0

0y s yd

ƒsx, yd = y sin xy.0ƒ>0y

3s4d + 1 = 13.s4, -5d0ƒ>0y

0ƒ
0y =

0

0y sx 2
+ 3xy + y - 1d = 0 + 3 # x # 1 + 1 - 0 = 3x + 1.

0ƒ>0y,
2s4d + 3s -5d = -7.s4, -5d0ƒ>0x

0ƒ
0x =

0

0x sx 2
+ 3xy + y - 1d = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

0ƒ>0x,

ƒsx, yd = x2
+ 3xy + y - 1.

s4, -5d0ƒ>0y0ƒ>0x

sx0, y0d.

0ƒ>0y0ƒ>0x
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USING TECHNOLOGY Partial Differentiation

A simple grapher can support your calculations even in multiple dimensions. If you
specify the values of all but one independent variable, the grapher can calculate partial
derivatives and can plot traces with respect to that remaining variable. Typically, a CAS
can compute partial derivatives symbolically and numerically as easily as it can compute
simple derivatives. Most systems use the same command to differentiate a function,
regardless of the number of variables. (Simply specify the variable with which differenti-
ation is to take place).

EXAMPLE 3 Partial Derivatives May Be Different Functions

Find and if

ƒsx, yd =

2y
y + cos x .

ƒyƒx
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Solution We treat ƒ as a quotient. With y held constant, we get

With x held constant, we get

Implicit differentiation works for partial derivatives the way it works for ordinary
derivatives, as the next example illustrates.

EXAMPLE 4 Implicit Partial Differentiation

Find if the equation

defines z as a function of the two independent variables x and y and the partial derivative
exists.

Solution We differentiate both sides of the equation with respect to x, holding y con-
stant and treating z as a differentiable function of x:

EXAMPLE 5 Finding the Slope of a Surface in the y-Direction

The plane intersects the paraboloid in a parabola. Find the slope of the
tangent to the parabola at (1, 2, 5) (Figure 14.16).

Solution The slope is the value of the partial derivative at (1, 2):

0z
0y `

s1,2d
=

0

0y sx 2
+ y 2d `

s1,2d
= 2y `

s1,2d
= 2s2d = 4.

0z>0y

z = x 2
+ y 2x = 1

 
0z
0x =

z
yz - 1

.

 ay -
1
z b  

0z
0x = 1

 y 
0z
0x -

1
z  

0z
0x = 1 + 0

 
0

0x s yzd -

0

0x ln z =

0x
0x +

0y
0x

yz - ln z = x + y

0z>0x

 =

s y + cos xds2d - 2ys1d
s y + cos xd2 =

2 cos x
s y + cos xd2 .

ƒy =
0

0y a 2y
y + cos x b =

s y + cos xd 
0

0y s2yd - 2y 
0

dy
 s y + cos xd

s y + cos xd2

 =

s y + cos xds0d - 2ys -sin xd
s y + cos xd2 =

2y sin x

s y + cos xd2 .

 ƒx =
0

0x a 2y
y + cos x b =

s y + cos xd 
0

0x s2yd - 2y 
0

0x s y + cos xd

s y + cos xd2

988 Chapter 14: Partial Derivatives

With y constant,
0

0x
 s yzd = y 

0z
0x

.

x

y
1 2

(1, 2, 5)

z

Surface
z � x2 � y2

x � 1

Tangent
line

Plane
x � 1

FIGURE 14.16 The tangent to the curve
of intersection of the plane and
surface at the point (1, 2, 5)
(Example 5).

z = x 2
+ y 2

x = 1
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As a check, we can treat the parabola as the graph of the single-variable function
in the plane and ask for the slope at The slope,

calculated now as an ordinary derivative, is

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent
variables are like the definitions for functions of two variables. They are ordinary
derivatives with respect to one variable, taken while the other independent variables are
held constant.

EXAMPLE 6 A Function of Three Variables

If x, y, and z are independent variables and

then

EXAMPLE 7 Electrical Resistors in Parallel

If resistors of and ohms are connected in parallel to make an R-ohm resistor, the
value of R can be found from the equation

(Figure 14.17). Find the value of when and ohms.

Solution To find we treat and as constants and, using implicit differenti-
ation, differentiate both sides of the equation with respect to 

When and 

1
R

=
1
30

+
1
45

+
1
90

=

3 + 2 + 1
90

=

6
90

=
1

15
,

R3 = 90,R1 = 30, R2 = 45,

 
0R
0R2

=
R2

R2
2 = a R

R2
b2

.

 -
1

R2 
0R
0R2

= 0 -
1

R2
2 + 0

 
0

0R2
 a1

R
b =

0

0R2
 a 1

R1
+

1
R2

+
1
R3
b

R2 :
R3R10R>0R2,

R3 = 90R1 = 30, R2 = 45,0R>0R2

1
R

=
1
R1

+
1
R2

+
1
R3

R3R1, R2 ,

 = x cos s y + 3zd 
0

0z s y + 3zd = 3x cos s y + 3zd.

 
0ƒ
0z =

0

0z [x sin s y + 3zd] = x 
0

0z sin s y + 3zd

ƒsx, y, zd = x sin s y + 3zd,

dz
dy

 `
y = 2

=

d
dy

 s1 + y 2d `
y = 2

= 2y `
y = 2

= 4.

y = 2.x = 1z = s1d2
+ y 2

= 1 + y 2

14.3 Partial Derivatives 989

� �

R3

R2

R1

FIGURE 14.17 Resistors arranged this
way are said to be connected in parallel
(Example 7). Each resistor lets a portion of
the current through. Their equivalent
resistance R is calculated with the formula

1
R

=

1
R1

+

1
R2

+

1
R3

.
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so and

Partial Derivatives and Continuity

A function ƒ(x, y) can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single vari-
able, where the existence of a derivative implies continuity. If the partial derivatives of
ƒ(x, y) exist and are continuous throughout a disk centered at however, then ƒ is
continuous at as we see at the end of this section.

EXAMPLE 8 Partials Exist, But ƒ Discontinuous

Let

(Figure 14.18).

(a) Find the limit of ƒ as (x, y) approaches (0, 0) along the line 

(b) Prove that ƒ is not continuous at the origin.

(c) Show that both partial derivatives and exist at the origin.

Solution

(a) Since ƒ(x, y) is constantly zero along the line (except at the origin), we have

(b) Since the limit in part (a) proves that ƒ is not continuous at (0, 0).

(c) To find at (0, 0), we hold y fixed at Then for all x, and the
graph of ƒ is the line in Figure 14.18. The slope of this line at any x is In
particular, at (0, 0). Similarly, is the slope of line at any y, so

at (0, 0).

Example 8 notwithstanding, it is still true in higher dimensions that differentiability at
a point implies continuity. What Example 8 suggests is that we need a stronger require-
ment for differentiability in higher dimensions than the mere existence of the partial deriv-
atives. We define differentiability for functions of two variables at the end of this section
and revisit the connection to continuity.

Second-Order Partial Derivatives

When we differentiate a function ƒ(x, y) twice, we produce its second-order derivatives.
These derivatives are usually denoted by

0
2ƒ

0y2 “d squared ƒdy squared” or  ƒyy “ƒ sub yy”

0
2ƒ

0x2 “d squared ƒdx squared” or ƒxx “ƒ sub xx”

0ƒ>0y = 0
L20ƒ>0y0ƒ>0x = 0

0ƒ>0x = 0.L1

ƒsx, yd = 1y = 0.0ƒ>0x

ƒs0, 0d = 1,

lim
sx, yd: s0,0d

 ƒsx, yd `
y = x

= lim
sx, yd: s0,0d

0 = 0.

y = x

0ƒ>0y0ƒ>0x

y = x.

ƒsx, yd = e0, xy Z 0

1, xy = 0

sx0, y0d,
sx0 , y0d,

0R
0R2

= a15
45
b2

= a1
3
b2

=
1
9

.

R = 15
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y

z

x

0

1

L1

L 2

z �
0,  xy � 0
1,  xy � 0

FIGURE 14.18 The graph of

consists of the lines and and the four
open quadrants of the xy-plane. The
function has partial derivatives at the
origin but is not continuous there
(Example 8).

L2L1

ƒsx, yd = e0, xy Z 0

1, xy = 0
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The defining equations are

and so on. Notice the order in which the derivatives are taken:

EXAMPLE 9 Finding Second-Order Partial Derivatives

If find

Solution

So So

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

in Example 9 were equal. This was not a coincidence. They must be equal whenever
and are continuous, as stated in the following theorem.ƒyxƒ, ƒx , ƒy , ƒxy ,

0
2ƒ

0y0x and 0
2ƒ

0x0y

 
0

2ƒ

0y2 =

0

0y a0ƒ
0y b = -x cos y. 

0
2ƒ

0x2 =

0

0x a0ƒ
0x b = ye x.

 
0

2ƒ
0x0y =

0

0x a0ƒ
0y b = -sin y + e x 

0
2ƒ

0y0x =

0

0y a0ƒ
0x b = -sin y + e x

 = -x sin y + e x = cos y + ye x

 
0ƒ
0y =

0

0y sx cos y + ye xd 
0ƒ
0x =

0

0x sx cos y + ye xd

0
2ƒ

0x2 , 0
2ƒ

0y0x , 0
2ƒ

0y2 , and 0
2ƒ

0x0y .

ƒsx, yd = x cos y + yex,

 ƒyx = sƒydx Means the same thing.

0
2ƒ

0x0y  Differentiate first with respect to y,  then with respect to x.

0
2ƒ

0x2 =
0

0x a0ƒ
0x b , 0

2ƒ
0x0y =

0

0x a0ƒ
0y b ,

0
2ƒ

0y0x “d squared ƒdy dx” or ƒxy “ƒ sub xy”

0
2ƒ

0x0y “d squared ƒdx dy” or ƒyx “ƒ sub yx”
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HISTORICAL BIOGRAPHY

Pierre-Simon Laplace
(1749–1827)

THEOREM 2 The Mixed Derivative Theorem
If ƒ(x, y) and its partial derivatives and are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then

ƒxysa, bd = ƒyxsa, bd.

ƒyxƒx , ƒy , ƒxy ,
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Theorem 2 is also known as Clairaut’s Theorem, named after the French mathemati-
cian Alexis Clairaut who discovered it. A proof is given in Appendix 7. Theorem 2 says
that to calculate a mixed second-order derivative, we may differentiate in either order, pro-
vided the continuity conditions are satisfied. This can work to our advantage.

EXAMPLE 10 Choosing the Order of Differentiation

Find if

Solution The symbol tells us to differentiate first with respect to y and then
with respect to x. If we postpone the differentiation with respect to y and differentiate first
with respect to x, however, we get the answer more quickly. In two steps,

If we differentiate first with respect to y, we obtain  as well.

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because
these appear the most frequently in applications, there is no theoretical limit to how many
times we can differentiate a function as long as the derivatives involved exist. Thus, we get
third- and fourth-order derivatives denoted by symbols like

and so on. As with second-order derivatives, the order of differentiation is immaterial as
long as all the derivatives through the order in question are continuous.

EXAMPLE 11 Calculating a Partial Derivative of Fourth-Order

Find

Solution We first differentiate with respect to the variable y, then x, then y again, and
finally with respect to z:

 ƒyxyz = -4

 ƒyxy = -4z

 ƒyx = -4yz + 2x

 ƒy = -4xyz + x2

ƒyxyz if  ƒsx, y, zd = 1 - 2xy 2z + x 2y.

 
0

4ƒ

0x 2
0y 2 = ƒyyxx , 

 
0

3ƒ

0x0y 2 = ƒyyx

0
2w>0x0y = 1

0w
0x = y and 0

2w
0y0x = 1.

0
2w>0x0y

w = xy +

e y

y 2
+ 1

.

0
2w>0x0y
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HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)
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Differentiability

The starting point for differentiability is not Fermat’s difference quotient but rather the
idea of increment. You may recall from our work with functions of a single variable in
Section 3.8 that if is differentiable at then the change in the value of ƒ
that results from changing x from to is given by an equation of the form

in which as For functions of two variables, the analogous property be-
comes the definition of differentiability. The Increment Theorem (from advanced calculus)
tells us when to expect the property to hold.

¢x : 0.P : 0

¢y = ƒ¿sx0d¢x + P¢x

x0 + ¢xx0

x = x0,y = ƒsxd
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THEOREM 3 The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of ƒ(x, y) are defined throughout an open
region R containing the point and that and are continuous at

Then the change

in the value of ƒ that results from moving from to another point 
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

(x0 + ¢x, y0 + ¢yd
sx0, y0d

¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0d

sx0, y0d.
ƒyƒxsx0, y0d

You can see where the epsilons come from in the proof in Appendix 7. You will also see
that similar results hold for functions of more than two independent variables.

DEFINITION Differentiable Function
A function is differentiable at if and 
exist and satisfies an equation of the form

in which each of as both We call ƒ differentiable if it is
differentiable at every point in its domain.

¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

¢z
ƒysx0, y0dƒxsx0, y0dsx0, y0dz = ƒsx, yd

In light of this definition, we have the immediate corollary of Theorem 3 that a func-
tion is differentiable if its first partial derivatives are continuous.

COROLLARY OF THEOREM 3 Continuity of Partial Derivatives Implies
Differentiability

If the partial derivatives and of a function ƒ(x, y) are continuous throughout
an open region R, then ƒ is differentiable at every point of R.

ƒyƒx
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As we can see from Theorems 3 and 4, a function ƒ(x, y) must be continuous at a point
if and are continuous throughout an open region containing Remem-

ber, however, that it is still possible for a function of two variables to be discontinuous at a
point where its first partial derivatives exist, as we saw in Example 8. Existence alone of the
partial derivative at a point is not enough.

sx0 , y0d.ƒyƒxsx0 , y0d
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If is differentiable, then the definition of differentiability assures that
approaches 0 as and approach 0. This tells

us that a function of two variables is continuous at every point where it is differentiable.
¢y¢x¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d

z = ƒsx, yd

THEOREM 4 Differentiability Implies Continuity
If a function ƒ(x, y) is differentiable at then ƒ is continuous at sx0 , y0d.sx0 , y0d,
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