EXERCISES 14.4

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express dw/dt as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate dw/dt at the given value of t.

1.
$$w = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$; $t = \pi$
2. $w = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t - \sin t$; $t = 0$
3. $w = \frac{x}{z} + \frac{y}{z}$, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$
4. $w = \ln (x^2 + y^2 + z^2)$, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$; $t = 3$
5. $w = 2ye^x - \ln z$, $x = \ln (t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$; $t = 1$
6. $w = z - \sin xy$, $x = t$, $y = \ln t$, $z = e^{t-1}$; $t = 1$

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express $\partial z/\partial u$ and $\partial z/\partial v$ as functions of u and v both by using the Chain Rule and by expressing z directly in terms of u and v before differentiating. Then (b) evaluate $\partial z/\partial u$ and $\partial z/\partial v$ at the given point (u, v).

7.
$$z = 4e^{x} \ln y$$
, $x = \ln (u \cos v)$, $y = u \sin v$;
 $(u, v) = (2, \pi/4)$
8. $z = \tan^{-1} (x/y)$, $x = u \cos v$, $y = u \sin v$;
 $(u, v) = (1.3, \pi/6)$

In Exercises 9 and 10, (a) express $\partial w/\partial u$ and $\partial w/\partial v$ as functions of u and v both by using the Chain Rule and by expressing w directly in

terms of u and v before differentiating. Then (b) evaluate $\partial w/\partial u$ and $\partial w/\partial v$ at the given point (u, v).

- **9.** w = xy + yz + xz, x = u + v, y = u v, z = uv; (u, v) = (1/2, 1)
- **10.** $w = \ln (x^2 + y^2 + z^2), \quad x = ue^v \sin u, \quad y = ue^v \cos u,$ $z = ue^v; \quad (u, v) = (-2, 0)$

In Exercises 11 and 12, (a) express $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ as functions of x, y, and z both by using the Chain Rule and by expressing u directly in terms of x, y, and z before differentiating. Then (b) evaluate $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ at the given point (x, y, z).

11.
$$u = \frac{p-q}{q-r}$$
, $p = x + y + z$, $q = x - y + z$,
 $r = x + y - z$; $(x, y, z) = (\sqrt{3}, 2, 1)$
12. $u = e^{qr} \sin^{-1}p$, $p = \sin x$, $q = z^2 \ln y$, $r = 1/z$;
 $(x, y, z) = (\pi/4, 1/2, -1/2)$

Using a Tree Diagram

In Exercises 13–24, draw a tree diagram and write a Chain Rule formula for each derivative.

13.
$$\frac{dz}{dt}$$
 for $z = f(x, y)$, $x = g(t)$, $y = h(t)$
14. $\frac{dz}{dt}$ for $z = f(u, v, w)$, $u = g(t)$, $v = h(t)$, $w = k(t)$
15. $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ for $w = h(x, y, z)$, $x = f(u, v)$, $y = g(u, v)$, $z = k(u, v)$

16. $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ for w = f(r, s, t), r = g(x, y), s = h(x, y), t = k(x, y)17. $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ for w = g(x, y), x = h(u, v), y = k(u, v)18. $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ for w = g(u, v), u = h(x, y), v = k(x, y)19. $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for z = f(x, y), x = g(t, s), y = h(t, s)20. $\frac{\partial y}{\partial r}$ for y = f(u), u = g(r, s)21. $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ for w = g(u), u = h(s, t)22. $\frac{\partial w}{\partial p}$ for w = f(x, y, z, v), x = g(p, q), y = h(p, q), z = j(p, q), v = k(p, q)23. $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ for w = f(x, y), x = h(r, s, t), y = k(r, s, t)

Implicit Differentiation

Assuming that the equations in Exercises 25–28 define y as a differentiable function of x, use Theorem 8 to find the value of dy/dx at the given point.

25. $x^3 - 2y^2 + xy = 0$, (1, 1) **26.** $xy + y^2 - 3x - 3 = 0$, (-1, 1) **27.** $x^2 + xy + y^2 - 7 = 0$, (1, 2) **28.** $xe^y + \sin xy + y - \ln 2 = 0$, (0, ln 2)

Three-Variable Implicit Differentiation

Theorem 8 can be generalized to functions of three variables and even more. The three-variable version goes like this: If the equation F(x, y, z) = 0 determines z as a differentiable function of x and y, then, at points where $F_z \neq 0$,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$.

Use these equations to find the values of $\partial z/\partial x$ and $\partial z/\partial y$ at the points in Exercises 29–32.

29. $z^3 - xy + yz + y^3 - 2 = 0$, (1, 1, 1) **30.** $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 = 0$, (2, 3, 6) **31.** $\sin(x + y) + \sin(y + z) + \sin(x + z) = 0$, (π, π, π) **32.** $xe^y + ye^z + 2\ln x - 2 - 3\ln 2 = 0$, (1, ln 2, ln 3)

Finding Specified Partial Derivatives

- **33.** Find $\partial w / \partial r$ when r = 1, s = -1 if $w = (x + y + z)^2$, $x = r s, y = \cos(r + s), z = \sin(r + s)$.
- 34. Find $\partial w/\partial v$ when u = -1, v = 2 if $w = xy + \ln z$, $x = v^2/u, y = u + v, z = \cos u$.
- **35.** Find $\partial w/\partial v$ when u = 0, v = 0 if $w = x^2 + (y/x), x = u 2v + 1, y = 2u + v 2.$
- **36.** Find $\frac{\partial z}{\partial u}$ when u = 0, v = 1 if $z = \sin xy + x \sin y$, $x = u^2 + v^2$, y = uv.
- **37.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = \ln 2$, v = 1 if $z = 5 \tan^{-1} x$ and $x = e^{u} + \ln v$.
- **38.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when u = 1 and v = -2 if $z = \ln q$ and $q = \sqrt{v+3} \tan^{-1} u$.

Theory and Examples

39. Changing voltage in a circuit The voltage V in a circuit that satisfies the law V = IR is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$\frac{dV}{dt} = \frac{\partial V}{\partial I}\frac{dI}{dt} + \frac{\partial V}{\partial R}\frac{dR}{dt}$$

to find how the current is changing at the instant when R = 600 ohms, I = 0.04 amp, dR/dt = 0.5 ohm/sec, and dV/dt = -0.01 volt/sec.

- **40.** Changing dimensions in a box The lengths *a*, *b*, and *c* of the edges of a rectangular box are changing with time. At the instant in question, a = 1 m, b = 2 m, c = 3 m, da/dt = db/dt = 1 m/sec, and dc/dt = -3 m/sec. At what rates are the box's volume *V* and surface area *S* changing at that instant? Are the box's interior diagonals increasing in length or decreasing?
- **41.** If f(u, v, w) is differentiable and u = x y, v = y z, and w = z x, show that

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$$

42. Polar coordinates Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function w = f(x, y).

a. Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta$$

and

$$\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$$

- **b.** Solve the equations in part (a) to express f_x and f_y in terms of $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$.
- c. Show that

$$(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.$$

- **43.** Laplace equations Show that if w = f(u, v) satisfies the Laplace equation $f_{uu} + f_{vv} = 0$ and if $u = (x^2 y^2)/2$ and v = xy, then w satisfies the Laplace equation $w_{xx} + w_{yy} = 0$.
- **44.** Laplace equations Let w = f(u) + g(v), where u = x + iy and v = x iy and $i = \sqrt{-1}$. Show that *w* satisfies the Laplace equation $w_{xx} + w_{yy} = 0$ if all the necessary functions are differentiable.

Changes in Functions Along Curves

45. Extreme values on a helix Suppose that the partial derivatives of a function f(x, y, z) at points on the helix $x = \cos t$, $y = \sin t$, z = t are

$$f_x = \cos t$$
, $f_y = \sin t$, $f_z = t^2 + t - 2$.

At what points on the curve, if any, can f take on extreme values?

- **46.** A space curve Let $w = x^2 e^{2y} \cos 3z$. Find the value of dw/dt at the point (1, ln 2, 0) on the curve $x = \cos t$, $y = \ln (t + 2)$, z = t.
- **47. Temperature on a circle** Let T = f(x, y) be the temperature at the point (x, y) on the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$ and suppose that

$$\frac{\partial T}{\partial x} = 8x - 4y, \qquad \frac{\partial T}{\partial y} = 8y - 4x.$$

a. Find where the maximum and minimum temperatures on the circle occur by examining the derivatives dT/dt and d^2T/dt^2 .

- **b.** Suppose that $T = 4x^2 4xy + 4y^2$. Find the maximum and minimum values of T on the circle.
- **48. Temperature on an ellipse** Let T = g(x, y) be the temperature at the point (x, y) on the ellipse

$$x = 2\sqrt{2}\cos t$$
, $y = \sqrt{2}\sin t$, $0 \le t \le 2\pi$,

and suppose that

$$\frac{\partial T}{\partial x} = y, \qquad \frac{\partial T}{\partial y} = x$$

- **a.** Locate the maximum and minimum temperatures on the ellipse by examining dT/dt and d^2T/dt^2 .
- **b.** Suppose that T = xy 2. Find the maximum and minimum values of *T* on the ellipse.

Differentiating Integrals

Under mild continuity restrictions, it is true that if

$$F(x) = \int_{a}^{b} g(t, x) dt,$$

then $F'(x) = \int_{a}^{b} g_{x}(t, x) dt$. Using this fact and the Chain Rule, we can find the derivative of

$$F(x) = \int_{a}^{f(x)} g(t, x) dt$$

by letting

$$G(u,x) = \int_a^u g(t,x) \, dt,$$

where u = f(x). Find the derivatives of the functions in Exercises 49 and 50.

49.
$$F(x) = \int_0^{x^2} \sqrt{t^4 + x^3} dt$$

50. $F(x) = \int_{x^2}^1 \sqrt{t^3 + x^2} dt$