EXERCISES 14.4

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express dw/dt as a function of *t*, both by using the Chain Rule and by expressing *w* in terms of *t* and differentiating directly with respect to t . Then **(b)** evaluate dw/dt at the given value of *t*.

1.
$$
w = x^2 + y^2
$$
, $x = \cos t$, $y = \sin t$; $t = \pi$
\n2. $w = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t - \sin t$; $t = 0$
\n3. $w = \frac{x}{z} + \frac{y}{z}$, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$
\n4. $w = \ln(x^2 + y^2 + z^2)$, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$;
\n $t = 3$
\n5. $w = 2ye^x - \ln z$, $x = \ln(t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$;
\n $t = 1$
\n6. $w = z - \sin xy$, $x = t$, $y = \ln t$, $z = e^{t-1}$; $t = 1$

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express $\partial z / \partial u$ and $\partial z / \partial v$ as functions of *u* and ν both by using the Chain Rule and by expressing z directly in terms of *u* and *v* before differentiating. Then **(b)** evaluate $\partial z/\partial u$ and $\partial z/\partial v$ at the given point (u, v) .

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$
 Exercises

7.
$$
z = 4e^x \ln y
$$
, $x = \ln (u \cos v)$, $y = u \sin v$;
\n $(u, v) = (2, \pi/4)$
\n8. $z = \tan^{-1} (x/y)$, $x = u \cos v$, $y = u \sin v$;
\n $(u, v) = (1.3, \pi/6)$

In Exercises 9 and 10, (a) express $\partial w / \partial u$ and $\partial w / \partial v$ as functions of *u* and ν both by using the Chain Rule and by expressing ν directly in terms of *u* and *v* before differentiating. Then **(b)** evaluate $\partial w / \partial u$ and $\partial w / \partial v$ at the given point (u, v) .

- **9.** $w = xy + yz + xz$, $x = u + v$, $y = u v$, $z = uv$; $(u, v) = (1/2, 1)$
- **10.** $w = \ln(x^2 + y^2 + z^2), \quad x = ue^v \sin u, \quad y = ue^v \cos u,$ $z = ue^v;$ $(u, v) = (-2, 0)$ $(u, v) = (-2, 0)$ $(u, v) = (-2, 0)$

In Exercises 11 and 12, (a) express $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ as functions of *x*, *y*, and *z* both by using the Chain Rule and by expressing *u* directly in terms of *x*, *y*, and *z* before differentiating. Then **(b)** evaluate $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, and $\frac{\partial u}{\partial z}$ at the given point (x, y, z) .

11.
$$
u = \frac{p-q}{q-r}
$$
, $p = x + y + z$, $q = x - y + z$,
\n $r = x + y - z$; $(x, y, z) = (\sqrt{3}, 2, 1)$
\n**12.** $u = e^{qr} \sin^{-1} p$, $p = \sin x$, $q = z^2 \ln y$, $r = 1/z$;
\n $(x, y, z) = (\pi/4, 1/2, -1/2)$

Using a Tree Diagram

In Exercises 13–24, draw a tree diagram and write a Chain Rule formula for each derivative.

13. $\frac{dz}{dt}$ for $z = f(x, y)$, $x = g(t)$, $y = h(t)$ **14.** $\frac{dz}{dt}$ for $z = f(u, v, w)$, $u = g(t)$, $v = h(t)$, $w = k(t)$ **15.** $\frac{\partial w}{\partial u}$ [and](tcu1404d.html) $\frac{\partial w}{\partial v}$ for $w = h(x, y, z)$, $x = f(u, v)$, $y = g(u, v)$, $z = k(u, v)$

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$
 Exercises

xercise

17.

19.

16.
$$
\frac{\partial w}{\partial x}
$$
 and $\frac{\partial w}{\partial y}$ for $w = f(r, s, t)$, $r = g(x, y)$, $s = h(x, y)$, $t = k(x, y)$

7.
$$
\frac{\partial w}{\partial u}
$$
 and $\frac{\partial w}{\partial v}$ for $w = g(x, y)$, $x = h(u, v)$, $y = k(u, v)$

18.
$$
\frac{\partial w}{\partial x}
$$
 and $\frac{\partial w}{\partial y}$ for $w = g(u, v)$, $u = h(x, y)$, $v = k(x, y)$

9.
$$
\frac{\partial z}{\partial t}
$$
 and $\frac{\partial z}{\partial s}$ for $z = f(x, y)$, $x = g(t, s)$, $y = h(t, s)$

20.
$$
\frac{\partial y}{\partial r}
$$
 for $y = f(u)$, $u = g(r, s)$

21.
$$
\frac{\partial w}{\partial s}
$$
 and $\frac{\partial w}{\partial t}$ for $w = g(u)$, $u = h(s, t)$

22.
$$
\frac{\partial w}{\partial p}
$$
 for $w = f(x, y, z, v)$, $x = g(p, q)$, $y = h(p, q)$,
 $z = j(p, q)$, $v = k(p, q)$

23.
$$
\frac{\partial w}{\partial r}
$$
 and $\frac{\partial w}{\partial s}$ for $w = f(x, y)$, $x = g(r)$, $y = h(s)$
24. $\frac{\partial w}{\partial s}$ for $w = g(x, y)$, $x = h(r, s, t)$, $y = k(r, s, t)$

Implicit Differentiation

Assuming that the equations in Exercises 25–28 define *y* as a differentiable function of *x*, use Theorem 8 to find the value of dy/dx at the given point.

25. $x^3 - 2y^2 + xy = 0$, (1, 1) **26.** $xy + y^2 - 3x - 3 = 0, \quad (-1, 1)$ **27.** $x^2 + xy + y^2 - 7 = 0$, $(1, 2)$ **28.** $xe^{y} + \sin xy + y - \ln 2 = 0$, ([0, ln](tcu1404e.html) 2)

Three-Variable Implicit Differentiation

Theorem 8 can be generalized to functions of three variables and even more. The three-variable version goes like this: If the equation $F(x, y, z) = 0$ determines *z* as a differentiable function of *x* and *y*, then, at points where $F_z \neq 0$,

$$
\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.
$$

Use these equations to find the values of $\partial z/\partial x$ and $\partial z/\partial y$ at the points in Exercises 29–32.

$$
\sum_{\text{Exercise:}}
$$

29. $z^3 - xy + yz + y^3 - 2 = 0$, $(1, 1, 1)$ **30.** $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 = 0$, ([2, 3, 6](tcu1404f.html))

31.
$$
\sin(x + y) + \sin(y + z) + \sin(x + z) = 0
$$
, (π, π, π)
32. $xe^{y} + ye^{z} + 2 \ln x - 2 - 3 \ln 2 = 0$, $(1, \ln 2, \ln 3)$

Finding Specified Partial Derivatives

- **33.** Find $\partial w / \partial r$ when $r = 1, s = -1$ if $w = (x + y + z)^2$, $x = r - s$, $y = \cos (r + s)$, $z = \sin (r + s)$.
- **34.** Find $\partial w/\partial v$ when $u = -1$, $v = 2$ if $w = xy + \ln z$, $x = v^2/u, y = u + v, z = \cos u.$
- **35.** Find $\partial w / \partial v$ when $u = 0, v = 0$ if $w = x^2 + (y/x)$, $x = u - 2v + 1, y = 2u + v - 2.$
- **36.** Find $\partial z/\partial u$ when $u = 0$, $v = 1$ if $z = \sin xy + x \sin y$, $x = u^2 + v^2, y = uv.$
- **37.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = \ln 2$, $v = 1$ if $z = 5 \tan^{-1} x$ and $x = e^u + \ln v$.
- **38.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = 1$ and $v = -2$ if $z = \ln q$ and $q = \sqrt{v + 3} \tan^{-1} u$.

Theory and Examples

39. Changing voltage in a circuit The voltage *V* in a circuit that satisfies the law $V = IR$ is slowly dropping as the battery wears out. At the same time, the resistance *R* is increasing as the resistor heats up. Use the equation

$$
\frac{dV}{dt} = \frac{\partial V}{\partial I}\frac{dI}{dt} + \frac{\partial V}{\partial R}\frac{dR}{dt}
$$

to find how the current is changing at the instant when $R =$ 600 ohms, $I = 0.04$ amp, $dR/dt = 0.5$ ohm/sec, and $dV/dt =$ -0.01 volt/sec.

- **40. Changing dimensions in a box** The lengths *a*, *b*, and *c* of the edges of a rectangular box are changing with time. At the instant in ques- $\sinh a = 1 \text{ m}, b = 2 \text{ m}, c = 3 \text{ m}, d a/dt = d b/dt = 1 \text{ m/sec},$ and $dc/dt = -3$ m/sec. At what rates are the box's volume *V* and surface area *S* changing at that instant? Are the box's interior diagonals increasing in length or decreasing?
- **41.** If $f(u, v, w)$ is differentiable and $u = x y$, $v = y z$, and $w = z - x$, show that

$$
\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.
$$

42. Polar coordinates Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function $w = f(x, y)$.

a. Show that

$$
\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta
$$

and

$$
\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.
$$

- **b.** Solve the equations in part (a) to express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \theta$.
- **c.** Show that

$$
(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.
$$

- **43. Laplace equations** Show that if $w = f(u, v)$ satisfies the Laplace equation $f_{uu} + f_{vv} = 0$ and if $u = (x^2 - y^2)/2$ and $v = xy$, then *w* satisfies the Laplace equation $w_{xx} + w_{yy} = 0$.
- **44. Laplace equations** Let $w = f(u) + g(v)$, where $u = x + iy$ and $v = x - iy$ and $i = \sqrt{-1}$. Show that *w* satisfies the Laplace equation $w_{xx} + w_{yy} = 0$ if all the necessary functions are differentiable.

Changes in Functions Along Curves

45. Extreme values on a helix Suppose that the partial derivatives of a function $f(x, y, z)$ at points on the helix $x = \cos t$, $y = \sin t$, $z = t$ are

$$
f_x = \cos t
$$
, $f_y = \sin t$, $f_z = t^2 + t - 2$.

At what points on the curve, if any, can *f* take on extreme values?

- **46. A space curve** Let $w = x^2 e^{2y} \cos 3z$. Find the value of dw/dt at the point (1, ln 2, 0) on the curve $x = \cos t$, $y = \ln (t + 2)$, $z = t$.
- **47. Temperature on a circle** Let $T = f(x, y)$ be the temperature at the point (x, y) on the circle $x = \cos t, y = \sin t, 0 \le t \le 2\pi$ and suppose that

$$
\frac{\partial T}{\partial x} = 8x - 4y, \qquad \frac{\partial T}{\partial y} = 8y - 4x.
$$

a. Find where the maximum and minimum temperatures on the circle occur by examining the derivatives dT/dt and d^2T/dt^2 .

- **b.** Suppose that $T = 4x^2 4xy + 4y^2$. Find the maximum and minimum values of *T* on the circle.
- **48. Temperature on an ellipse** Let $T = g(x, y)$ be the temperature at the point (x, y) on the ellipse

$$
x = 2\sqrt{2}\cos t, \qquad y = \sqrt{2}\sin t, \qquad 0 \le t \le 2\pi,
$$

and suppose that

$$
\frac{\partial T}{\partial x} = y, \qquad \frac{\partial T}{\partial y} = x.
$$

- **a.** Locate the maximum and minimum temperatures on the ellipse by examining dT/dt and d^2T/dt^2 .
- **b.** Suppose that $T = xy 2$. Find the maximum and minimum values of *T* on the ellipse.

Differentiating Integrals

Under mild continuity restrictions, it is true that if

$$
F(x) = \int_a^b g(t, x) dt,
$$

then $F'(x) = \int_a^b g_x(t, x) dt$. Using this fact and the Chain Rule, we can find the derivative of $\int_a^b g_x(t, x) dt.$

$$
F(x) = \int_{a}^{f(x)} g(t, x) dt
$$

by letting

$$
G(u,x) = \int_a^u g(t,x) dt,
$$

where $u = f(x)$. Find the derivatives of the functions in Exercises 49 and 50.

49.
$$
F(x) = \int_0^{x^2} \sqrt{t^4 + x^3} dt
$$

50.
$$
F(x) = \int_{x^2}^1 \sqrt{t^3 + x^2} dt
$$