14.5 Directional Derivatives and Gradient Vectors 1005

Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.23) showing contours on the West Point Area along the
Hudson River in New York, you will notice that the tributary streams flow perpendicular to
the contours. The streams are following paths of steepest descent so the waters reach the
Hudson as quickly as possible. Therefore, the instantaneous rate of change in a stream’s
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Line x = xo + suy,y = yg + su,

u=ui+ u,j
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FIGURE 14.24 The rate of change of f in
the direction of u at a point Py is the rate at
which f changes along this line at Py .

altitude above sea level has a particular direction. In this section, you see why this direc-
tion, called the “downhill” direction, is perpendicular to the contours.

Hudson River

)

FIGURE 14.23 Contours of the West Point Area in New
York show streams, which follow paths of steepest
descent, running perpendicular to the contours.

Directional Derivatives in the Plane

We know from Section 14.4 that if f(x, y) is differentiable, then the rate at which f changes
with respect to ¢ along a differentiable curve x = g(z), y = h(¢) is
df _ofdx  9f dy

dr “oxdr Taydr

At any point Py(xq, yo) = Po(g(to), h(t)), this equation gives the rate of change of f
with respect to increasing ¢ and therefore depends, among other things, on the direction
of motion along the curve. If the curve is a straight line and 7 is the arc length parameter
along the line measured from Py in the direction of a given unit vector u, then df/dt is
the rate of change of f with respect to distance in its domain in the direction of u. By
varying u, we find the rates at which f changes with respect to distance as we move
through Py in different directions. We now define this idea more precisely.

Suppose that the function f(x, ) is defined throughout a region R in the xy-plane, that
Po(xo, yo) is a point in R, and that u = u;i + u,j is a unit vector. Then the equations

X = xo + suy, ¥y =y + su

parametrize the line through P, parallel to u. If the parameter s measures arc length from
Py in the direction of u, we find the rate of change of f at P in the direction of u by calcu-
lating df/ds at Py (Figure 14.24).
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DEFINITION Directional Derivative

The derivative of f at Py(x¢, yo) in the direction of the unit vector u = u;i +
u,j is the number

(df> . flxo + suy, yo + sua) — flxo, yo)
— = lim
u,Py s—0

ds K > (1)

provided the limit exists.

The directional derivative is also denoted by

“The derivative of f at Py
D . . o .
( “f)PO in the direction of u”

EXAMPLE 1  Finding a Directional Derivative Using the Definition
Find the derivative of

fOey) = x* + xy
at Py(1, 2) in the direction of the unit vector u = (1/\/2)1 + (1/\/2)1

Solution
(?) — lim flxo + sui, yo +SSu2) — f(xo0, y0) Equation (1)
S ll,P() s—0
1 1
f<1 +s5—=2+ s-> - f(1,2)
i V2 V2
s—0 S
<1 +S>2 + <1 +S><2 +s> — (12 +1-2)
i V2 V2 V2
s—0 S
2s s2> < 3s s2>
1+ + 5+ (2+2=+5) -3
o < V2 2 V2 o 2
— 5 s

+ s2
lim\/zf= lim<5+s> = <5+0> :L‘
e =0\V2 V2 V2
The rate of change of f(x,y) = x* + xy at Py(1,2) in the direction u = (1/V2)i +
(1/V2)jis5/V2. -

Interpretation of the Directional Derivative

The equation z = f(x, y) represents a surface S in space. If zo = f(xo, yo), then the point
P(x0, yo, zo) lies on S. The vertical plane that passes through P and Py(xo, yo) parallel to u
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z
Tf(xo + sup, ¥ + suy) — f(xg, yo)

Surface S:
z=fxy) |
J
aT
\
P(x, )’o, Z0)

\ (xg + sup,yg + su,)

Po(xg.yg) W= i+ unj

FIGURE 14.25 The slope of curve C at
Pyis thp slope (PQ); this is the

directional derivative

af
(g ) u,Py

= (Duf)Po-

intersects S in a curve C (Figure 14.25). The rate of change of f in the direction of u is the
slope of the tangent to C at P.

When u = i, the directional derivative at Py is df/dx evaluated at (xo, o). When
u = j, the directional derivative at Py is df/dy evaluated at (xo, yo). The directional deriv-
ative generalizes the two partial derivatives. We can now ask for the rate of change of f in
any direction u, not just the directions i and j.

Here’s a physical interpretation of the directional derivative. Suppose that 7 = f(x, y)
is the temperature at each point (x, y) over a region in the plane. Then f(x, yo) is the tem-
perature at the point Po(xo, yo) and (Dy f)p, is the instantaneous rate of change of the tem-
perature at Py stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function f. We begin with the line

X = Xxo + suy, y =y T suy, (2)

through Py(x¢, o) , parametrized with the arc length parameter s increasing in the direc-
tion of the unit vector u = u;i + u,j. Then
dx

af _ (9f of
().~ @), &),
af of
B <8x>Po.ul i (ay)f’o.uz

4

Chain Rule for differentiable f°
ds

From Equations (2),

dx/ds = uy and dy/ds = u,
af\ ., () . . .
(&), ()] s i) @
Gradient of f at Py Direction u
DEFINITION Gradient Vector
The gradient vector (gradient) of f(x, ) at a point Py(xo, yo) is the vector
af . of.
Vf = El + @J
obtained by evaluating the partial derivatives of f at Py .

The notation Vf is read “grad f” as well as “gradient of f” and “del f.” The symbol V
by itself is read “del.” Another notation for the gradient is grad f, read the way it is
written.

Equation (3) says that the derivative of a differentiable function f in the direction of u
at Py is the dot product of u with the gradient of f at Py .
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THEOREM 9 The Directional Derivative Is a Dot Product
If f(x, ) is differentiable in an open region containing Py(xg, o), then

d
(%), = @new @

the dot product of the gradient f at Py and u.

EXAMPLE 2  Finding the Directional Derivative Using the Gradient

Find the derivative of f(x,y) = xe” + cos (xy) at the point (2, 0) in the direction of
v = 3i — 4j.

Solution  The direction of v is the unit vector obtained by dividing v by its length:

v v _ 3. 4.
= =7i—Zj

YU Ts 5 T
The partial derivatives of f are everywhere continuous and at (2, 0) are given by
f(2,0) = (¢¥ = ysin(xp))p0 =" =0 =1

£1(2,0) = (xe” — xsin (xy))p0 = 20— 2.0 =2.

Vi=i+2j
2r The gradient of f at (2, 0) is

Vileo = f:(2,0)i + £,(2,0)j =i + 2j
(Figure 14.26). The derivative of f at (2, 0) in the direction of v is therefore
L I (Duf) | (2,00 = Vf| Qou Equation (4)

0 1P0(2,0\3
a3 4. 3 _8_ _
3. 4. — = (i + 2j) (5 SJ)_S s =L -

R TSt Tsd

-

Evaluating the dot product in the formula

FIGURE 14.26 Picture V/ as a vector Duf = Vf-u =|Vf|lulcos® = |Vf|cos®,
in the domain of f. In the case of where 6 is the angle between the vectors u and Vf, reveals the following properties.
f(x,y) = xe” + cos (xy), the domain
is the entire plane. The rate at which f
changes at (2, 0) in the direction Properties of the Directional Derivative D,f = Vf-u = |Vf|cos 6
u=(3/5)i— (4/5)jis Vf-u = —1
(Example 2).

1. The function f increases most rapidly when cos @ = 1 or when u is the
direction of Vf. That is, at each point P in its domain, f increases most
rapidly in the direction of the gradient vector Vf at P. The derivative in this
direction is

Duf =|Vflcos (0) = |Vf].
2. Similarly, f decreases most rapidly in the direction of — V. The derivative
in this direction is Dyf = | Vf]|cos (7) = —|Vf].
3. Any direction u orthogonal to a gradient V£ # 0 is a direction of zero
change in f because 6 then equals 7/2 and
Duf = |Vf|cos (w/2) = |Vf]-0 = 0,
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| ‘7\) y
(1‘} 1)} Zero change
Most rapid / inf
decrease in f !
X A
Most rapid / Vi=i+]

increase in f

FIGURE 14.27 The direction in which
f(x,y) = (x*/2) + (¥?/2) increases most
rapidly at (1, 1) is the direction of

Vf|a1 =i + j. It corresponds to the
direction of steepest ascent on the surface
at (1, 1, 1) (Example 3).

As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3  Finding Directions of Maximal, Minimal, and Zero Change
Find the directions in which f(x, y) = (x%/2) + (¥?/2)
(a) Increases most rapidly at the point (1, 1)

(b) Decreases most rapidly at (1, 1).
(¢) What are the directions of zero change in f at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of V£ at (1, 1). The gradient there
is

(VHay = i+ yi)an =i+j.
Its direction is
i+tj i+

_ _ D PR S
TS TRV /Ty V2 TRt

(b) The function decreases most rapidly in the direction of —Vf at (1, 1), which is

See Figure 14.27. [

Gradients and Tangents to Level Curves

If a differentiable function f(x, y) has a constant value ¢ along a smooth curve
r = g(1)i + h(¢)j (making the curve a level curve of f), then f(g(¢), k(¢)) = c. Differenti-
ating both sides of this equation with respect to ¢ leads to the equations

4 fg(0. 1) = 4 (¢)

%g g@ =0 Chain Rule
ox dt 9y dt
of . of .\ (dg.  dh.\ _
<6xl+ayj> <dtl+ al) =0 (5)
dr

Vi
/ dt

Equation (5) says that Vf is normal to the tangent vector dr/dt, so it is normal to the
curve.
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The level curve f(x, y) = f(xq, ¥o)
At every point (xg, yo) in the domain of a differentiable function f(x, y), the gra-
dient of f is normal to the level curve through (x, yo) (Figure 14.28).

(xp, Y0)
/

V£ (xos yo)

Equation (5) validates our observation that streams flow perpendicular to the contours

in topographical maps (see Figure 14.23). Since the downflowing stream will reach its

FIGURE 14.28 The gradient of a destination in the fastest way, it' must flqw ir'l the direcFion of the negative grac’iient’ vectors

from Property 2 for the directional derivative. Equation (5) tells us these directions are

perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves.

They are the lines normal to the gradients. The line through a point Py(xy, yy) normal to a
vector N = Ai + Bj has the equation

differentiable function of two variables at a
point is always normal to the function’s
level curve through that point.

Alx = x) + B(y = yo) = 0

(Exercise 35). If N is the gradient (Vf)(, ) = fx(x0,y0)i + fy(x0, y0)j, the equation is
the tangent line given by

Fxlxo, yo)(x — x0) + flxo, 0)(y — »0) = 0. (6)

EXAMPLE 4  Finding the Tangent Line to an Ellipse

Find an equation for the tangent to the ellipse

VF2, 1) = —i + 2j x—2y=—4 2L

2
V2 T Hyi=2 (Figure 14.29) at the point (=2, 1).
21 |
|
2 -1 o 1 2 o>

- 2
fley) =T + 52

x  Solution The ellipse is a level curve of the function

FIGURE 14.29 We can find the tangent The gradient of f at (—2, 1) is
to the ellipse (x%/4) + y? = 2 by treating

the ellipse as a level curve of the function _[x. . . .
J(.y) = (2/4) + y? (Example 4) Vil = <2' " ’><z,l> S
The tangent is the line
(D&x+2)+2)y—1)=0 Equation (6)

x —2y=—4 [

If we know the gradients of two functions f and g, we automatically know the gradients of
their constant multiples, sum, difference, product, and quotient. You are asked to establish
the following rules in Exercise 36. Notice that these rules have the same form as the corre-
sponding rules for derivatives of single-variable functions.
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Algebra Rules for Gradients
1. Constant Multiple Rule:  V(kf) = kVf (any number k)

2. Sum Rule: V(f +g) =Vf+ Vg
3. Difference Rule: V(f —g) = Vf— Vg
4. Product Rule: V(fg) = fVg + gVf
Vf — fV
5. Quotient Rule: V<£> = w
g

EXAMPLE 5  Illustrating the Gradient Rules

We illustrate the rules with
fey)=x—y glny) =3y
Vi=i-—j Ve = 3j.
We have
1. V(2f) = V(2x — 2y) = 2i — 2j = 2Vf
2. V(f+g)=Vix+2y)=i+2j=Vf+ Vg
3. V(f—g)=Vix—4)=i—-—4j=Vf—- Vg
4. V(fg) = VBxy — 3y%) = 3i + 3x — 6)j
=3y(i —j) + 3yj + Bx — 6)j
= 3y(i = j) + (3x — 3y)j
=3y =)+ (x —»)3j = gVf + fVg

1, x i
3y 3y?
_ 3yi -3 3yl —j) — By — 3yl
9y2 9y2
UG- - —p3) gV fVg .
9y g

Functions of Three Variables

For a differentiable function f(x, y, z) and a unit vector u = u;i + u,j + wuszk in space, we

have
_af. of .  of
Vf—al-i-@‘]-i-afzk
and
af af af
Dyf = Vf-u =l +$u2 g W
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14.5 Directional Derivatives and Gradient Vectors 1013

The directional derivative can once again be written in the form
Dyf = Vf-u =|Vf||lu|cos =|Vf]| cosb,

so the properties listed earlier for functions of two variables continue to hold. At any given
point, f increases most rapidly in the direction of Vf and decreases most rapidly in the di-
rection of —Vf. In any direction orthogonal to Vf, the derivative is zero.

EXAMPLE 6  Finding Directions of Maximal, Minimal, and Zero Change

(a) Find the derivative of f(x,y,z) = x> — xp? — z at Py(1, 1,0) in the direction of
v = 2i — 3j + 6k.

(b) In what directions does f change most rapidly at Py, and what are the rates of change
in these directions?

Solution
(a) The direction of v is obtained by dividing v by its length:

Iv|= V22 + (=3)* + (6)* = V49 = 7

\4 2. 3 6

=m=7l—7j+7k.

u

The partial derivatives of f at Py are
fi=062 =)0 =2 fi="2ln=-2  f:=-1agn="L
The gradient of f at Py is

Vilaig =2i — 2j — k.

The derivative of f at Py in the direction of v is therefore

. . 2. 3. 6
(Duf)aio = Vilgu=(2i —2j — k) <71 -7t 7k)

_4
7

+

IS
Qo
Qo

(b) The function increases most rapidly in the direction of Vf = 2i — 2j — k and de-
creases most rapidly in the direction of —Vf. The rates of change in the directions are,
respectively,

Vfl= V@ + (27 + (-1»=V9=3 and -|Vf|=-3. =
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