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Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.23) showing contours on the West Point Area along the
Hudson River in New York, you will notice that the tributary streams flow perpendicular to
the contours. The streams are following paths of steepest descent so the waters reach the
Hudson as quickly as possible. Therefore, the instantaneous rate of change in a stream’s

14.5
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Directional Derivatives in the Plane

We know from Section 14.4 that if ƒ(x, y) is differentiable, then the rate at which ƒ changes
with respect to t along a differentiable curve is

At any point this equation gives the rate of change of ƒ
with respect to increasing t and therefore depends, among other things, on the direction
of motion along the curve. If the curve is a straight line and t is the arc length parameter
along the line measured from in the direction of a given unit vector u, then dƒ dt is
the rate of change of ƒ with respect to distance in its domain in the direction of u. By
varying u, we find the rates at which ƒ changes with respect to distance as we move
through in different directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that
is a point in R, and that is a unit vector. Then the equations

parametrize the line through parallel to u. If the parameter s measures arc length from
in the direction of u, we find the rate of change of ƒ at in the direction of u by calcu-

lating dƒ ds at (Figure 14.24).P0>
P0P0

P0

x = x0 + su1, y = y0 + su2

u = u1 i + u2 jP0sx0, y0d

P0

>P0

P0sx0, y0d = P0sgst0d, hst0dd,

dƒ
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

.

x = gstd, y = hstd
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FIGURE 14.23 Contours of the West Point Area in New
York show streams, which follow paths of steepest
descent, running perpendicular to the contours.

x

y

0

R

Line x � x0 � su1, y � y0 � su2

u � u1i � u2 j

Direction of
increasing s

P0(x0, y0) 

FIGURE 14.24 The rate of change of ƒ in
the direction of u at a point is the rate at
which ƒ changes along this line at P0 .

P0

altitude above sea level has a particular direction. In this section, you see why this direc-
tion, called the “downhill” direction, is perpendicular to the contours.
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The directional derivative is also denoted by

EXAMPLE 1 Finding a Directional Derivative Using the Definition

Find the derivative of

at in the direction of the unit vector 

Solution

The rate of change of at in the direction 

is 

Interpretation of the Directional Derivative

The equation represents a surface S in space. If then the point
lies on S. The vertical plane that passes through P and parallel to uP0sx0, y0dPsx0, y0, z0d

z0 = ƒsx0, y0d,z = ƒsx, yd

5>12.A1>22 B j
u = A1>12 B i +P0s1, 2dƒsx, yd = x2

+ xy

 = lim
s:0

 

5s22
+ s2

s = lim
s:0

 ¢ 522
+ s≤ = ¢ 522

+ 0≤ =

522
.

 = lim
s:0

 

¢1 +

2s22
+

s2

2 ≤ + ¢2 +

3s22
+

s2

2 ≤ - 3

s

 = lim
s:0

 

¢1 +

s22
≤2

+ ¢1 +

s22
≤ ¢2 +

s22
≤ - s12

+ 1 # 2d

s

 = lim
s:0

 

ƒ¢1 + s # 122
, 2 + s # 122

≤ - ƒs1, 2d

s

 ¢dƒ
ds
≤

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s

u = A1>22 B i + A1>22 B j.P0s1, 2d

ƒsx, yd = x 2
+ xy

sDu ƒdP0.
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DEFINITION Directional Derivative
The derivative of ƒ at in the direction of the unit vector

is the number

(1)

provided the limit exists.

adƒ
ds
b

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s ,

u2j
u � u1i �P0(x0, y0)

“The derivative of ƒ at 
in the direction of u”

P0

Equation (1)
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intersects S in a curve C (Figure 14.25). The rate of change of ƒ in the direction of u is the
slope of the tangent to C at P.

When the directional derivative at is evaluated at When
the directional derivative at is evaluated at The directional deriv-

ative generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in
any direction u, not just the directions i and j.

Here’s a physical interpretation of the directional derivative. Suppose that 
is the temperature at each point (x, y) over a region in the plane. Then is the tem-
perature at the point and is the instantaneous rate of change of the tem-
perature at stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function ƒ. We begin with the line

(2)

through parametrized with the arc length parameter s increasing in the direc-
tion of the unit vector Then

(3)

Direction uGradient of ƒ at P0

('')''*(''''')'''''*

 = c a0ƒ
0x bP0

 i + a0ƒ
0y bP0

j d # cu1 i + u2 j d .

 = a0ƒ
0x bP0

# u1 + a0ƒ
0y bP0

# u2

 adƒ
ds
b

u,P0

= a0ƒ
0x bP0

 
dx
ds

+ a0ƒ
0y bP0

 
dy
ds

u = u1 i + u2 j.
P0sx0, y0d ,

x = x0 + su1 , y = y0 + su2 ,

P0

sDu ƒdP0P0sx0, y0d
ƒsx0, y0d

T = ƒsx, yd

sx0, y0d.0ƒ>0yP0u = j,
sx0, y0d.0ƒ>0xP0u = i,
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



z

x

yC

Q

s

Surface S:
z � f (x, y)

f (x0 � su1, y0 � su2 ) � f (x0, y0)

Tangent line

P(x0, y0, z0)

P0(x0, y0) u � u1i � u2 j

(x0 � su1, y0 � su2)

FIGURE 14.25 The slope of curve C at
is slope (PQ); this is the 

directional derivative

adƒ

ds
b

u,P0

= sDu ƒdP0.

lim
Q:P

P0

Chain Rule for differentiable f

From Equations (2),
and dy>ds = u2dx>ds = u1

DEFINITION Gradient Vector
The gradient vector (gradient) of ƒ(x, y) at a point is the vector

obtained by evaluating the partial derivatives of ƒ at P0 .

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j

P0sx0, y0d

The notation is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol 
by itself is read “del.” Another notation for the gradient is grad ƒ, read the way it is
written.

Equation (3) says that the derivative of a differentiable function ƒ in the direction of u
at is the dot product of u with the gradient of ƒ at P0 .P0

§§ƒ
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EXAMPLE 2 Finding the Directional Derivative Using the Gradient

Find the derivative of at the point (2, 0) in the direction of

Solution The direction of v is the unit vector obtained by dividing v by its length:

The partial derivatives of ƒ are everywhere continuous and at (2, 0) are given by

The gradient of ƒ at (2, 0) is

(Figure 14.26). The derivative of ƒ at (2, 0) in the direction of v is therefore

Evaluating the dot product in the formula

where is the angle between the vectors u and reveals the following properties.§ƒ,u

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ cos u = ƒ §ƒ ƒ cos u,

 = si + 2jd # a35 i -
4
5 jb =

3
5 -

8
5 = -1 .

 sDuƒd ƒ s2,0d = §ƒ ƒ s2,0d # u

§ƒ ƒ s2,0d = ƒxs2, 0di + ƒys2, 0dj = i + 2j

 ƒys2, 0d = sxe y
- x sin sxydds2,0d = 2e0

- 2 # 0 = 2.

 ƒxs2, 0d = se y
- y sin sxydds2,0d = e0

- 0 = 1

u =

v
ƒ v ƒ

=

v
5 =

3
5 i -

4
5 j.

v = 3i - 4j.
ƒsx, yd = xe y

+ cos sxyd
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THEOREM 9 The Directional Derivative Is a Dot Product
If ƒ(x, y) is differentiable in an open region containing then

(4)

the dot product of the gradient ƒ at and u.P0

adƒ
ds
b

u,P0

= s§ƒdP0
# u,

P0sx0 , y0d,

Equation (4)
x

y

0 1 3 4

–1

1

2
∇f � i � 2j

u �    i �    j3
5

4
5

P0(2, 0)

FIGURE 14.26 Picture as a vector 
in the domain of ƒ. In the case of

the domain 
is the entire plane. The rate at which ƒ
changes at (2, 0) in the direction

is 
(Example 2).

§ƒ # u = -1u = s3>5di - s4>5dj

ƒsx, yd = xe y
+ cos sxyd,

§ƒ

Properties of the Directional Derivative 

1. The function ƒ increases most rapidly when or when u is the
direction of That is, at each point P in its domain, ƒ increases most
rapidly in the direction of the gradient vector at P. The derivative in this
direction is

2. Similarly, ƒ decreases most rapidly in the direction of The derivative
in this direction is 

3. Any direction u orthogonal to a gradient is a direction of zero
change in ƒ because then equals and

Duƒ = ƒ §ƒ ƒ cos sp>2d = ƒ §ƒ ƒ
# 0 = 0.

p>2u

§f Z 0

Duƒ = ƒ §ƒ ƒ cos spd = - ƒ §ƒ ƒ .
- §ƒ.

Duƒ = ƒ §ƒ ƒ cos s0d = ƒ §ƒ ƒ .

§ƒ
§ƒ.

cos u = 1

Duƒ = §ƒ # u = ƒ §ƒ ƒ cos u
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As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3 Finding Directions of Maximal, Minimal, and Zero Change

Find the directions in which 

(a) Increases most rapidly at the point (1, 1)

(b) Decreases most rapidly at (1, 1).

(c) What are the directions of zero change in ƒ at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of at (1, 1). The gradient there
is

Its direction is

(b) The function decreases most rapidly in the direction of at (1, 1), which is

(c) The directions of zero change at (1, 1) are the directions orthogonal to 

See Figure 14.27.

Gradients and Tangents to Level Curves

If a differentiable function ƒ(x, y) has a constant value c along a smooth curve
(making the curve a level curve of ƒ), then Differenti-

ating both sides of this equation with respect to t leads to the equations

(5)

Equation (5) says that is normal to the tangent vector dr dt, so it is normal to the
curve.

>§ƒ

dr

dt
§ƒ

('')''*('')''*

 a0ƒ
0x  i +

0ƒ
0y  jb # adg

dt
 i +

dh
dt

 jb = 0.

 
0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

= 0

 
d
dt

 ƒsgstd, hstdd =

d
dt

 scd

ƒsgstd, hstdd = c.r = gstdi + hstdj

n = -
122

 i +
122

 j and -n =
122

 i -
122

 j.

§ƒ:

-u = -
122

 i -
122

 j.

- §ƒ

u =

i + j

ƒ i + j ƒ

=

i + j2s1d2
+ s1d2

=
122

 i +
122

 j.

s§ƒds1,1d = sxi + yjds1,1d = i + j .

§ƒ

ƒsx, yd = sx 2>2d + s y 2>2d
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z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid
increase in f

Most rapid
decrease in f

∇f � i � j

Zero change
in f

–∇f

z � f (x, y)

�      �
2
x2

2
y2

FIGURE 14.27 The direction in which
increases most

rapidly at (1, 1) is the direction of
It corresponds to the

direction of steepest ascent on the surface
at (1, 1, 1) (Example 3).

§ƒ ƒ s1,1d = i + j.

ƒsx, yd = sx2>2d + s y2>2d

Chain Rule
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Equation (5) validates our observation that streams flow perpendicular to the contours
in topographical maps (see Figure 14.23). Since the downflowing stream will reach its
destination in the fastest way, it must flow in the direction of the negative gradient vectors
from Property 2 for the directional derivative. Equation (5) tells us these directions are
perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves.
They are the lines normal to the gradients. The line through a point normal to a
vector has the equation

(Exercise 35). If N is the gradient the equation is
the tangent line given by

(6)

EXAMPLE 4 Finding the Tangent Line to an Ellipse

Find an equation for the tangent to the ellipse

(Figure 14.29) at the point 

Solution The ellipse is a level curve of the function

The gradient of ƒ at is

The tangent is the line

If we know the gradients of two functions ƒ and g, we automatically know the gradients of
their constant multiples, sum, difference, product, and quotient. You are asked to establish
the following rules in Exercise 36. Notice that these rules have the same form as the corre-
sponding rules for derivatives of single-variable functions.

 x - 2y = -4.

 s -1dsx + 2d + s2ds y - 1d = 0

§ƒ ƒ s-2,1d = ax
2

 i + 2yjb
s-2,1d

= - i + 2j.

s -2, 1d

ƒsx, yd =

x 2

4
+ y 2.

s -2, 1d.

x 2

4
+ y 2

= 2

ƒxsx0, y0dsx - x0d + ƒysx0, y0dsy - y0d = 0.

s§ƒdsx0, y0d = ƒxsx0, y0di + ƒysx0, y0dj,

Asx - x0d + Bs y - y0d = 0

N = Ai + Bj
P0sx0, y0d
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At every point in the domain of a differentiable function ƒ(x, y), the gra-
dient of ƒ is normal to the level curve through (Figure 14.28).sx0, y0d

sx0, y0d
The level curve f (x, y) � f (x0, y0)

(x0, y0)

∇f (x0, y0)

FIGURE 14.28 The gradient of a
differentiable function of two variables at a
point is always normal to the function’s
level curve through that point.

Equation (6)

y

x
0–1–2

1

1 2

∇f (–2, 1) � – i � 2j x � 2y � –4

(–2, 1)

�2

2�2

� y2 � 2x2

4

FIGURE 14.29 We can find the tangent
to the ellipse by treating
the ellipse as a level curve of the function

(Example 4).ƒsx, yd = sx 2>4d + y 2

sx 2>4d + y 2
= 2
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EXAMPLE 5 Illustrating the Gradient Rules

We illustrate the rules with

We have

1.

2.

3.

4.

5.

Functions of Three Variables

For a differentiable function ƒ(x, y, z) and a unit vector in space, we
have

and

Duƒ = §ƒ # u =

0ƒ
0x  u1 +

0ƒ
0y  u2 +

0ƒ
0z  u3.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

u = u1 i + u2 j + u3 k

 =

3ysi - jd - sx - yd3j

9y2 =

g§ƒ - ƒ§g

g2 .

 =

3yi - 3xj

9y2 =

3ysi - jd - s3x - 3ydj
9y2

 =
1
3y

 i -

x
3y2 j

 § aƒg b = § ax - y
3y
b = § a x

3y
-

1
3
b

 = 3ysi - jd + sx - yd3j = g§ƒ + ƒ§g

 = 3ysi - jd + s3x - 3ydj

 = 3ysi - jd + 3yj + s3x - 6ydj

 §sƒgd = §s3xy - 3y2d = 3yi + s3x - 6ydj

§sƒ - gd = §sx - 4yd = i - 4j = §ƒ - §g

§sƒ + gd = §sx + 2yd = i + 2j = §ƒ + §g

§s2ƒd = §s2x - 2yd = 2i - 2j = 2§ƒ

ƒsx, yd = x - y gsx, yd = 3y

§ƒ = i - j §g = 3j.

1012 Chapter 14: Partial Derivatives

Algebra Rules for Gradients

1. Constant Multiple Rule:

2. Sum Rule:

3. Difference Rule:

4. Product Rule:

5. Quotient Rule: § aƒg b =

g§ƒ - ƒ§g

g2

§sƒgd = ƒ§g + g§ƒ

§sƒ - gd = §ƒ - §g

§sƒ + gd = §ƒ + §g

§skƒd = k§ƒ sany number kd
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The directional derivative can once again be written in the form

so the properties listed earlier for functions of two variables continue to hold. At any given
point, ƒ increases most rapidly in the direction of and decreases most rapidly in the di-
rection of In any direction orthogonal to the derivative is zero.

EXAMPLE 6 Finding Directions of Maximal, Minimal, and Zero Change

(a) Find the derivative of at in the direction of

(b) In what directions does ƒ change most rapidly at and what are the rates of change
in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

The partial derivatives of ƒ at are

The gradient of ƒ at is

The derivative of ƒ at in the direction of v is therefore

(b) The function increases most rapidly in the direction of and de-
creases most rapidly in the direction of The rates of change in the directions are,
respectively,

ƒ §ƒ ƒ = 2s2d2
+ s -2d2

+ s -1d2
= 29 = 3 and - ƒ §ƒ ƒ = -3 .

- §ƒ.
§ƒ = 2i - 2j - k

 =
4
7 +

6
7 -

6
7 =

4
7 .

 sDuƒds1,1,0d = §ƒ ƒs1,1,0d # u = s2i - 2j - kd # a27 i -

3
7 j +

6
7 kb

P0

§ƒ ƒ s1,1,0d = 2i - 2j - k.

P0

ƒx = s3x2
- y2ds1,1,0d = 2, ƒy = -2xy ƒ s1,1,0d = -2, ƒz = -1 ƒ s1,1,0d = -1.

P0

 u =

v
ƒ v ƒ

=
2
7 i -

3
7 j +

6
7 k.

 ƒ v ƒ = 2s2d2
+ s -3d2

+ s6d2
= 249 = 7

P0,

v = 2i - 3j + 6k.
P0s1, 1, 0dƒsx, y, zd = x 3

- xy 2
- z

§ƒ,- §ƒ.
§ƒ

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ  cos u = ƒ §ƒ ƒ  cos u,
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