14.5 Directional Derivatives and Gradient Vectors 1013

EXERCISES 14.5

Calculating Gradients at Points

In Exercises 1-4, find the gradient of the function at the given point. Then sketch the gradient together with the level curve that passes through the point.

1.
$$f(x, y) = y - x$$
, (2, 1) **2.** $f(x, y) = \ln(x^2 + y^2)$, (1, 1)

3.
$$g(x, y) = y - x^2$$
, $(-1, 0)$ **4.** $g(x, y) = \frac{x^2}{2} - \frac{y^2}{2}$, $(\sqrt{2}, 1)$

In Exercises 5–8, find
$$\nabla f$$
 at the given point.
5. $f(x, y, z) = x^2 + y^2 - 2z^2 + z \ln x$, (1, 1, 1)
6. $f(x, y, z) = 2z^3 - 3(x^2 + y^2)z + \tan^{-1} xz$, (1, 1, 1)

7.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2} + \ln(xyz), \quad (-1, 2, -2)$$

8. $f(x, y, z) = e^{x+y} \cos z + (y+1) \sin^{-1} x, \quad (0, 0, \pi/6)$

Finding Directional Derivatives

In Exercises 9–16, find the derivative of the function at P_0 in the direction of **A**.

- 9. $f(x, y) = 2xy 3y^2$, $P_0(5, 5)$, $\mathbf{A} = 4\mathbf{i} + 3\mathbf{j}$ 10. $f(x, y) = 2x^2 + y^2$, $P_0(-1, 1)$, $\mathbf{A} = 3\mathbf{i} - 4\mathbf{j}$ 11. $g(x, y) = x - (y^2/x) + \sqrt{3} \sec^{-1}(2xy)$, $P_0(1, 1)$, $\mathbf{A} = 12\mathbf{i} + 5\mathbf{j}$ 12. $h(x, y) = \tan^{-1}(y/x) + \sqrt{3} \sin^{-1}(xy/2)$, $P_0(1, 1)$, $\mathbf{A} = 3\mathbf{i} - 2\mathbf{j}$ 13. f(x, y, z) = xy + yz + zx, $P_0(1, -1, 2)$, $\mathbf{A} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$
- **14.** $f(x, y, z) = x^2 + 2y^2 3z^2$, $P_0(1, 1, 1)$, $\mathbf{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
- **15.** $g(x, y, z) = 3e^x \cos yz$, $P_0(0, 0, 0)$, $\mathbf{A} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$
- **16.** $h(x, y, z) = \cos xy + e^{yz} + \ln zx$, $P_0(1, 0, 1/2)$, $\mathbf{A} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$

Directions of Most Rapid Increase and Decrease

In Exercises 17–22, find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions.

17. $f(x, y) = x^2 + xy + y^2$, $P_0(-1, 1)$ **18.** $f(x, y) = x^2y + e^{xy}\sin y$, $P_0(1, 0)$ **19.** f(x, y, z) = (x/y) - yz, $P_0(4, 1, 1)$ **20.** $g(x, y, z) = xe^y + z^2$, $P_0(1, \ln 2, 1/2)$ **21.** $f(x, y, z) = \ln xy + \ln yz + \ln xz$, $P_0(1, 1, 1)$ **22.** $h(x, y, z) = \ln (x^2 + y^2 - 1) + y + 6z$, $P_0(1, 1, 0)$

Tangent Lines to Curves

In Exercises 23–26, sketch the curve f(x, y) = c together with ∇f and the tangent line at the given point. Then write an equation for the tangent line.

23.
$$x^2 + y^2 = 4$$
, $(\sqrt{2}, \sqrt{2})$ **24.** $x^2 - y = 1$, $(\sqrt{2}, 1)$
25. $xy = -4$, $(2, -2)$ **26.** $x^2 - xy + y^2 = 7$, $(-1, 2)$

Theory and Examples

- **27.** Zero directional derivative In what direction is the derivative of $f(x, y) = xy + y^2$ at P(3, 2) equal to zero?
- **28.** Zero directional derivative In what directions is the derivative of $f(x, y) = (x^2 y^2)/(x^2 + y^2)$ at P(1, 1) equal to zero?
- **29.** Is there a direction **u** in which the rate of change of $f(x, y) = x^2 3xy + 4y^2$ at P(1, 2) equals 14? Give reasons for your answer.

- **30.** Changing temperature along a circle Is there a direction **u** in which the rate of change of the temperature function T(x, y, z) = 2xy yz (temperature in degrees Celsius, distance in feet) at P(1, -1, 1) is -3° C/ft? Give reasons for your answer.
- 31. The derivative of f(x, y) at P₀(1, 2) in the direction of i + j is 2√2 and in the direction of -2j is -3. What is the derivative of f in the direction of -i 2j? Give reasons for your answer.
- **32.** The derivative of f(x, y, z) at a point *P* is greatest in the direction of $\mathbf{v} = \mathbf{i} + \mathbf{j} \mathbf{k}$. In this direction, the value of the derivative is $2\sqrt{3}$.
 - **a.** What is ∇f at *P*? Give reasons for your answer.
 - **b.** What is the derivative of f at P in the direction of $\mathbf{i} + \mathbf{j}$?
- **33.** Directional derivatives and scalar components How is the derivative of a differentiable function f(x, y, z) at a point P_0 in the direction of a unit vector **u** related to the scalar component of $(\nabla f)_{P_0}$ in the direction of **u**? Give reasons for your answer.
- **34.** Directional derivatives and partial derivatives Assuming that the necessary derivatives of f(x, y, z) are defined, how are $D_i f$, $D_j f$, and $D_k f$ related to f_x , f_y , and f_z ? Give reasons for your answer.
- **35.** Lines in the *xy*-plane Show that $A(x x_0) + B(y y_0) = 0$ is an equation for the line in the *xy*-plane through the point (x_0, y_0) normal to the vector $\mathbf{N} = A\mathbf{i} + B\mathbf{j}$.
- **36.** The algebra rules for gradients Given a constant k and the gradients

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$

and

$$\nabla g = \frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k},$$

use the scalar equations

$$\frac{\partial}{\partial x}(kf) = k \frac{\partial f}{\partial x}, \qquad \frac{\partial}{\partial x}(f \pm g) = \frac{\partial f}{\partial x} \pm \frac{\partial g}{\partial x},$$

$$\frac{\partial}{\partial x}(fg) = f \frac{\partial g}{\partial x} + g \frac{\partial f}{\partial x}, \qquad \frac{\partial}{\partial x} \left(\frac{f}{g}\right) = \frac{g \frac{\partial f}{\partial x} - f \frac{\partial g}{\partial x}}{g^2},$$

and so on, to establish the following rules.

a. $\nabla(kf) = k\nabla f$ b. $\nabla(f + g) = \nabla f + \nabla g$ c. $\nabla(f - g) = \nabla f - \nabla g$ d. $\nabla(fg) = f\nabla g + g\nabla f$ e. $\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$