14.5 Directional Derivatives and Gradient Vectors **1013**

EXERCISES 14.5

Calculating Gradients at Points

In Exercises 1–4, find the gradient of the function at the given point. Then sketch the gradient together with the level curve that passes through the point.

$$
\begin{array}{c}\n\mathbf{W} \\
\mathbf{Exercises}\n\end{array}
$$

1.
$$
f(x, y) = y - x
$$
, (2, 1) 2. $f(x, y) = \ln(x^2 + y^2)$, (1, 1)

3.
$$
g(x, y) = y - x^2
$$
, $(-1, 0)$ 4. $g(x, y) = \frac{x^2}{2} - \frac{y^2}{2}$, $(\sqrt{2}, 1)$

In Exercises 5–8, find ∇f at the given point. **5.** $f(x, y, z) = x^2 + y^2 - 2z^2 + z \ln x$, (1, 1, 1) **6.** $f(x, y, z) = 2z^3 - 3(x^2 + y^2)z + \tan^{-1} xz$, ([1, 1, 1](tcu1405b.html))

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

$$
\overbrace{\text{Exercise}}^{\bullet}
$$

7. $f(x, y, z) = (x^2 + y^2 + z^2)$ **8.** $f(x, y, z) = e^{x+y} \cos z + (y + 1) \sin^{-1} x$, $(0, 0, \pi/6)$ $(0, 0, \pi/6)$ $(0, 0, \pi/6)$

Finding Directional Derivatives

In Exercises 9–16, find the derivative of the function at P_0 in the direction of **A**.

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$
 Exercises

9.
$$
f(x, y) = 2xy - 3y^2
$$
, $P_0(5, 5)$, $\mathbf{A} = 4\mathbf{i} + 3\mathbf{j}$
\n10. $f(x, y) = 2x^2 + y^2$, $P_0(-1, 1)$, $\mathbf{A} = 3\mathbf{i} - 4\mathbf{j}$
\n11. $g(x, y) = x - (y^2/x) + \sqrt{3} \sec^{-1}(2xy)$, $P_0(1, 1)$,
\n $\mathbf{A} = 12\mathbf{i} + 5\mathbf{j}$
\n12. $h(x, y) = \tan^{-1}(y/x) + \sqrt{3} \sin^{-1}(xy/2)$, $P_0(1, 1)$,
\n $\mathbf{A} = 3\mathbf{i} - 2\mathbf{j}$
\n13. $f(x, y, z) = xy + yz + zx$, $P_0(1, -1, 2)$, $\mathbf{A} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$
\n14. $f(x, y, z) = x^2 + 2y^2 - 3z^2$, $P_0(1, 1, 1)$, $\mathbf{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
\n15. $g(x, y, z) = 3e^x \cos yz$, $P_0(0, 0, 0)$, $\mathbf{A} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$

16. $h(x, y, z) = \cos xy + e^{yz} + \ln zx, \quad P_0(1, 0, 1/2),$ $h(x, y, z) = \cos xy + e^{yz} + \ln zx, \quad P_0(1, 0, 1/2),$ $h(x, y, z) = \cos xy + e^{yz} + \ln zx, \quad P_0(1, 0, 1/2),$ $A = i + 2j + 2k$

Directions of Most Rapid Increase and Decrease

In Exercises 17–22, find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions.

17.
$$
f(x, y) = x^2 + xy + y^2
$$
, $P_0(-1, 1)$
\n18. $f(x, y) = x^2y + e^{xy} \sin y$, $P_0(1, 0)$
\n19. $f(x, y, z) = (x/y) - yz$, $P_0(4, 1, 1)$
\n20. $g(x, y, z) = xe^y + z^2$, $P_0(1, \ln 2, 1/2)$
\n21. $f(x, y, z) = \ln xy + \ln yz + \ln xz$, $P_0(1, 1, 1)$
\n22. $h(x, y, z) = \ln (x^2 + y^2 - 1) + y + 6z$, $P_0(1, 1, 0)$

Tangent Lines to Curves

In Exercises 23–26, sketch the curve $f(x, y) = c$ together with ∇f and the tangent line at the given point. Then write an equation for the tangent line.

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$
 Exercise

23. $x^2 + y^2 = 4$, $(\sqrt{2}, \sqrt{2})$ **24.** $x^2 - y = 1$, $(\sqrt{2}, 1)$ **25.** $xy = -4$ $xy = -4$ $xy = -4$, $(2, -2)$ **26.** $x^2 - xy + y^2 = 7$, $(-1, 2)$

Theory and Examples

- **27. Zero directional derivative** In what direction is the derivative of $f(x, y) = xy + y^2$ at $P(3, 2)$ equal to zero?
- **28. Zero directional derivative** In what directions is the derivative of $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$ at $P(1, 1)$ equal to zero?
- **29.** Is there a direction **u** in which the rate of change of $f(x, y) =$ $x^2 - 3xy + 4y^2$ at *P*(1, 2) equals 14? Give reasons for your answer.
- 30. Changing temperature along a circle Is there a direction **u** in which the rate of change of the temperature function $T(x, y, z) =$ $2xy - yz$ (temperature in degrees Celsius, distance in feet) at $P(1, -1, 1)$ is $-3^{\circ}C/\text{ft}$? Give reasons for your answer.
- **31.** The derivative of $f(x, y)$ at $P_0(1, 2)$ in the direction of $\mathbf{i} + \mathbf{j}$ is $2\sqrt{2}$ and in the direction of $-2j$ is -3 . What is the derivative of f in the direction of $-i - 2j$? Give reasons for your answer.
- **32.** The derivative of $f(x, y, z)$ at a point *P* is greatest in the direction of $\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$. In this direction, the value of the derivative is $2\sqrt{3}$.
	- **a.** What is ∇f at *P*? Give reasons for your answer.
	- **b.** What is the derivative of f at P in the direction of $\mathbf{i} + \mathbf{j}$?
- **33. Directional derivatives and scalar components** How is the derivative of a differentiable function $f(x, y, z)$ at a point P_0 in the direction of a unit vector **u** related to the scalar component of $(\nabla f)_{P_0}$ in the direction of **u**? Give reasons for your answer.
- **34. Directional derivatives and partial derivatives** Assuming that the necessary derivatives of $f(x, y, z)$ are defined, how are $D_i f$, $D_j f$, and $D_k f$ related to f_x, f_y , and f_z ? Give reasons for your answer.
- **35. Lines in the** *xy***-plane** Show that $A(x x_0) + B(y y_0) = 0$ is an equation for the line in the *xy*-plane through the point (x_0, y_0) normal to the vector $N = A\mathbf{i} + B\mathbf{j}$.
- **36. The algebra rules for gradients** Given a constant *k* and the gradients

$$
\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}
$$

and

$$
\nabla g = \frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k},
$$

use the scalar equations

$$
\frac{\partial}{\partial x}(kf) = k \frac{\partial f}{\partial x}, \qquad \frac{\partial}{\partial x}(f \pm g) = \frac{\partial f}{\partial x} \pm \frac{\partial g}{\partial x},
$$

$$
\frac{\partial}{\partial x}(fg) = f \frac{\partial g}{\partial x} + g \frac{\partial f}{\partial x}, \qquad \frac{\partial}{\partial x} \left(\frac{f}{g}\right) = \frac{g \frac{\partial f}{\partial x} - f \frac{\partial g}{\partial x}}{g^2},
$$

and so on, to establish the following rules.

a. $\nabla(kf) = k\nabla f$ **b.** $\nabla(f+g) = \nabla f + \nabla g$ **c.** $\nabla(f - g) = \nabla f - \nabla g$ **d.** $\nabla(fg) = f\nabla g + g\nabla f$ **e.** $\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$