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Tangent Planes and Differentials

Vo /

Vi

_ —fy,)=c

FIGURE 14.30 The gradient Vf is
orthogonal to the velocity vector of every
smooth curve in the surface through Py.
The velocity vectors at Py therefore lie in a
common plane, which we call the tangent
plane at Py.

In this section we define the tangent plane at a point on a smooth surface in space. We
calculate an equation of the tangent plane from the partial derivatives of the function
defining the surface. This idea is similar to the definition of the tangent line at a point on
a curve in the coordinate plane for single-variable functions (Section 2.7). We then study
the total differential and linearization of functions of several variables.

Tangent Planes and Normal Lines

If r = g(t)i + h(t)j + k(1)k is a smooth curve on the level surface f(x,y,z) = c of a
differentiable function f, then f(g(¢), h(¢), k(¢)) = c. Differentiating both sides of this
equation with respect to ¢ leads to

< fg(0), h(0). K1) = ()

ode it an | 0k,
ox dt dy dt 0z dt Chain Rule
of . of . of g  dh.  dk,\ _
(axl+8yj+azk> (dtl+dtj+dtk =0 8
Vf dr/dt

At every point along the curve, Vf is orthogonal to the curve’s velocity vector.

Now let us restrict our attention to the curves that pass through P, (Figure 14.30).
All the velocity vectors at P are orthogonal to Vf at Py, so the curves’ tangent lines all
lie in the plane through Py normal to Vf. We call this plane the tangent plane of the
surface at Py. The line through P, perpendicular to the plane is the surface’s normal line
at Py.

DEFINITIONS

The tangent plane at the point Py(xo, yo, zo) on the level surface f(x, y,z) = ¢
of a differentiable function f is the plane through Py normal to Vf|p,.

Tangent Plane, Normal Line

The normal line of the surface at Py is the line through Py parallel to Vf|p,.

Thus, from Section 12.5, the tangent plane and normal line have the following equations:

Tangent Plane to f(x, y, z) = c at Py(x9, yo, 20)
To(Po)(x = x0) + fu(Po)(y = yo) + f(Po)(z = z0) = 0 ()

Normal Line to f(x, y,z) = ¢ at Py(xqg, yo, Z0)

y =y + f,(Po,

X =Xx9 t+ fx(P())l‘, z=1zp+ fz(PO)t (3)

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley


http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

1016  Chapter 14: Partial Derivatives

EXAMPLE 1  Finding the Tangent Plane and Normal Line
The surface

PL2.4) Py +z-9=0 Find the tangent plane and normal line of the surface
oll, 2,

f(x, ¥, Z) =y2 + y2 +z—-—9=0 A circular paraboloid
at the point Py(1, 2, 4).
Normal line

Solution The surface is shown in Figure 14.31.

\ The tangent plane is the plane through P, perpendicular to the gradient of f at Py .
The gradient is

Tangent plane
Vf|P0 = (2xi + 2yj + k)(1,2,4) =2i +4j + k.

The tangent plane is therefore the plane

y
x/ Qx— 1) +4(y—2)+(z—4) =0, or 2x+4y+z=14
FIGURE 14.31 The tangent plane The line normal to the surface at Py is
and normal line to the surface x=1+2¢ y =2+ 4, =4 + ¢ m
x2+y2+z—9=0atPyl,2,4)
(Example 1). To find an equation for the plane tangent to a smooth surface z = f(x, y) at a point

Po(xo, yo, zo) Where zy = f(xo, yo), we first observe that the equation z = f(x, y) is equiv-
alent to f(x, y) — z = 0. The surface z = f(x, y) is therefore the zero level surface of the
function F(x, y,z) = f(x,y) — z. The partial derivatives of F are

Fo= 2 (fey) =2 =fi= 0= f
Fy= g (fley) =2 == 0=

_ 9 A
F, = % (fx,y) —2)=0—1= —1
The formula

F(Po)(x — x0) + Fy(Po)(y — yo) + F(Po)(z — z9) = 0

for the plane tangent to the level surface at P, therefore reduces to

felxo, yo)(x — x0) + filxo, yo)(y — y0) — (z — z) = 0.

Plane Tangent to a Surface z = f(x, y) at (xo, yo, f(x0, »0))
The plane tangent to the surface z = f(x, y) of a differentiable function f at the
point Py(xo, yo, z0) = (X0, y0, f(x0,0)) is

Jx(x0, y0)(x — x0) + f(x0, y0)(y — o) — (z — 20) = 0. (4)

EXAMPLE 2  Finding a Plane Tangent to a Surface z = f(x, y)

Find the plane tangent to the surface z = x cosy — ye™ at (0, 0, 0).
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The plane
x+z—-4=0
\_Y_l

8(x,y,2)

The ellipse E
(1,1,3)

The cylinder
2 +y2-2=0
\ﬁ_l

S(x,y,2)

FIGURE 14.32 The cylinder
flx,y,z) = x>+ y? — 2 = 0and the
plane g(x,y,z) =x +z—-4=0
intersect in an ellipse £ (Example 3).

14.6 Tangent Planes and Differentials 1017

Solution ~ We calculate the partial derivatives of f(x,y) = xcosy — ye* and use
Equation (4):

£0,0) = (cosy = ye')goy = 1= 0-1 =1
£(0,0) = (—xsiny — e*)gp=0—-1= —1
The tangent plane is therefore
l*(x—0)—1-(y —0)—(z—0) =0, Equation (4)
or

x—y—z=0. [ |

EXAMPLE 3  Tangent Line to the Curve of Intersection of Two Surfaces
The surfaces
fx,y,z) =x*+y?—2=0  Acylinder
and
gx,y,z) =x+z—4=0  Aplane
meet in an ellipse E (Figure 14.32). Find parametric equations for the line tangent to £ at

the point Py(1, 1, 3) .

Solution The tangent line is orthogonal to both Vf and Vg at Py, and therefore parallel
tov = Vf X Vg. The components of v and the coordinates of P, give us equations for the
line. We have

Vo = (2xi + 2j)aas = 2i + 2j
Veglaay =+ Kai3 =i+ k

i j k
v=Qi+2)x({i+k =12 2 0|=2i—2j—2k
1 0 1
The tangent line is
x =1+ 2t y=1-2t z=3— 2t [ |

Estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to
estimate how much the value of a function f changes if we move a small distance ds from
a point Py to another point nearby. If f were a function of a single variable, we would have

df = f' (Py) ds. Ordinary derivative X increment
For a function of two or more variables, we use the formula
df = (Vfl Py" ll) ds, Directional derivative X increment

where u is the direction of the motion away from Py.
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Estimating the Change in f in a Direction u
To estimate the change in the value of a differentiable function f when we move a
small distance ds from a point Py in a particular direction u, use the formula

df = (Vflp u) + ds

N
Directional Distance
derivative increment

EXAMPLE 4  Estimating Change in the Value of f(x, y, 2)
Estimate how much the value of
f(x,y,z) = ysinx + 2yz
will change if the point P(x, y, z) moves 0.1 unit from Py(0, 1, 0) straight toward
Pi(2,2,-2).

Solution We first find the derivative of f at P, in the direction of the vector PO_IBI =
2i + j — 2k. The direction of this vector is

PoPy PPy 2. 1. 2
—T—i—gl‘f‘g]—g .
| PoP1|

The gradient of f at Py is
Vfl(O,l,O) = ((ycosx)i + (sinx + 22)j + 2yk))(0,1,0) =i+ 2k.
Therefore,

. 2. 1. 2 2 4
Vf|p0-u=(1+2k)-<31+3J—3k)=3—3=—

2

3

The change df in f that results from moving ds = 0.1 unit away from Py in the direction
of u is approximately

df = (Vf|p, - u)(ds) = <— §>(0.1) ~ —0.067 unit. -

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to replace them
with simpler ones that give the accuracy required for specific applications without being
so difficult to work with. We do this in a way that is similar to the way we find linear
replacements for functions of a single variable (Section 3.8).

Suppose the function we wish to replace is z = f(x,y) and that we want the
replacement to be effective near a point (xo, yo) at which we know the values of f, f,, and
fy and at which f is differentiable. If we move from (xo, yo) to any point (x, y) by increments
Ax = x — xpand Ay = y — y,, then the definition of differentiability from Section 14.3
gives the change

G, y) — f(xo, y0) = filxo, yo)Ax + fi(x0, o)Ay + €1Ax + €4y,
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where €1, e, — 0 as Ax, Ay — 0. If the increments Ax and Ay are small, the products
Ao €1Ax and e, Ay will eventually be smaller still and we will have
point — o (x,y)
near (o, o) fx,») = f(xo,y0) + filxo, y0)(x — x0) + fi(x0,y0)(y — »o).
L)
Ay=y-x In other words, as long as Ax and Ay are small, f will have approximately the same value
A ks as the linear. function L. If f is hard to use, and our work can tolerate the error involved, we
fis differentiable may approximate f by L (Figure 14.33).
0 Y0)* Ax = x — 5
DEFINITIONS Linearization, Standard Linear Approximation
The linearization of a function f(x, y) at a point (xy, yo) where f is differentiable
FIGURE 14.33 If f is differentiable at is the function
(x0,10), then the value of f at any point
(x, ) nearby is approximately L(x,y) = f(x0,0) + fulx0, y0)(x = x0) + f,(x0, »0)(¥ = ¥o). (5)
f(x0,y0) + fulxo, yo)Ax + fy(xo, yo) Ay. The approximation
f(x,y) = L(x, »)
is the standard linear approximation of f at (x¢, yo).

From Equation (4), we see that the plane z = L(x, y) is tangent to the surface
z = f(x, y) at the point (xo, y9). Thus, the linearization of a function of two variables is
a tangent-plane approximation in the same way that the linearization of a function of a
single variable is a tangent-/ine approximation.

EXAMPLE 5  Finding a Linearization

Find the linearization of

flry) = = xy + 37 + 3
at the point (3, 2).

Solution We first evaluate f, f, and f, at the point (xo, yo) = (3, 2):

73,2) = <x2 — oy + %yz + 3) =3
(32)
Jd
£:(3,2) = o= (x2 —xy+ y + 3) = (2x = y)ay = 4
(3.2)
J
H3,2) = (xz —xy+ y + 3) = (=x+yep = —1L
y (32)
giving
L(x,y) = f(x0,y0) + fulx0,y0)(x — x0) + f(x0,y0)(y — »0)
=8+ Wx—-3)+(—1)y—2)=4x —y — 2.
The linearization of f at (3,2)is L(x,y) = 4x — y — 2. ]
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(X0, ¥0)

FIGURE 14.34 The rectangular region
R: |x — xo| = h,|y — yo| = kinthe
xy-plane.

When approximating a differentiable function f(x, y) by its linearization L(x, y) at
(x0, y0), an important question is how accurate the approximation might be.

If we can find a common upper bound M for | f«|,|f,,|, and | f,| on a rectangle
R centered at (xg, yg) (Figure 14.34), then we can bound the error £ throughout R by
using a simple formula (derived in Section 14.10). The error is defined by E(x,y) =

flx,y) — L(x, ).

The Error in the Standard Linear Approximation

If f has continuous first and second partial derivatives throughout an open set
containing a rectangle R centered at (xg, yo) and if M is any upper bound for the
values of | fx|,| fyy|, and | fx,| on R, then the error E(x, y) incurred in replacing
f(x, y) on R by its linearization

L(x,y) = f(xo0,y0) + folx0,y0)(x = x0) + fulxo, y0)(y — »0)

satisfies the inequality

1
|E(xr,y)| = 5 M(|x = xo| + |y = »o])*

To make | E(x, y) | small for a given M, we just make |x — xo|and |y — yo| small.

EXAMPLE 6  Bounding the Error in Example 5

Find an upper bound for the error in the approximation f(x,y) ~ L(x, y) in Example 5
over the rectangle

R: |x —3|=0.1, ly —2|=0.1.

Express the upper bound as a percentage of f(3, 2), the value of f at the center of the
rectangle.

Solution We use the inequality
1
|E(x, )| = 5 M(lx = xo] + [y = »o)?.

To find a suitable value for M, we calculate f,, fy,, and f,,, finding, after a routine
differentiation, that all three derivatives are constant, with values

[l =121=2,  |fol=1-1=1 |ful=]1]=1
The largest of these is 2, so we may safely take M to be 2. With (xg, yo) = (3, 2), we then
know that, throughout R,
1
|EGey)| = 2 @x = 3]+ |y = 207 = (x = 3] + |y - 2|2

Finally, since |x — 3| = 0.1 and|y — 2| = 0.1 on R, we have
|E(x,y)| = (0.1 + 0.1)*> = 0.04.
As a percentage of f(3,2) = 8, the error is no greater than

O'T?“ X 100 = 0.5% . n
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Differentials

Recall from Section 3.8 that for a function of a single variable, y = f(x), we defined the
change in f as x changes from a to a + Ax by

Af = fla + Ax) = f(a)
and the differential of f as
df = f'(a)Ax.

We now consider a function of two variables.
Suppose a differentiable function f(x, y) and its partial derivatives exist at a point
(x0, vo). If we move to a nearby point (xo + Ax, yo + Ay), the change in f is

Af = flxo + Ax,y0 + Ay) — f(x0, y0).

A straightforward calculation from the definition of L(x, y), using the notation x — xy = Ax
and y — yo = Ay, shows that the corresponding change in L is

AL = L(xo + Ax,yo + Ay) — L(x¢, yo)
= f(x0, y0)Ax + f)(x0,y0)Ay.

The differentials dx and dy are independent variables, so they can be assigned any values.
Often we take dx = Ax = x — xo, and dy = Ay = y — yy. We then have the following
definition of the differential or fotal differential of f.

DEFINITION Total Differential
If we move from (xg, yo) to a point (xo + dx, yo + dy) nearby, the resulting change

df = fu(xo,y0) dx + f(xo, yo) dy

in the linearization of f is called the total differential of f.

EXAMPLE 7  Estimating Change in Volume

Suppose that a cylindrical can is designed to have a radius of 1 in. and a height of 5 in., but
that the radius and height are off by the amounts dr = +0.03 and dh = —0.1. Estimate
the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in V = 7r2h, we use
AV = dV = V.(ry, hy) dr + Vi(ro, hy) dh.
With V, = 2zrrh and V), = 7rr?, we get
dV = 2arohy dr + mr¢* dh = 2mw(1)(5)(0.03) + 7(1)*(—0.1)
=037 — 0.17 = 027 ~ 0.63 in.’ n
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(@) (b)

FIGURE 14.35 The volume of cylinder
(a) is more sensitive to a small change in r
than it is to an equally small change in /.
The volume of cylinder (b) is more
sensitive to small changes in / than it

is to small changes in » (Example 8).

Instead of absolute change in the value of a function f(x, y), we can estimate relative
change or percentage change by

af d df
f(x0, y0) o f(xo0, y0)

respectively. In Example 7, the relative change is estimated by

X 100,

dv _ 027 _ 027
Vro, ho) — mrghy  w(1)%(5)

giving 4% as an estimate of the percentage change.

= 0.04,

EXAMPLE 8  Sensitivity to Change

Your company manufactures right circular cylindrical molasses storage tanks that are 25 ft
high with a radius of 5 ft. How sensitive are the tanks’ volumes to small variations in
height and radius?

Solution With V' = 7rr2h, we have the approximation for the change in volume as
dV = V.(5,25)dr + V;(5,25) dh
= (2mrh)52s) dr + (7Tl"2)(5,25) dh
= 2507 dr + 25 dh.

Thus, a 1-unit change in » will change V' by about 2507 units. A 1-unit change in 4 will
change V by about 257 units. The tank’s volume is 10 times more sensitive to a small change
in r than it is to a small change of equal size in /. As a quality control engineer concerned
with being sure the tanks have the correct volume, you would want to pay special atten-
tion to their radii.

In contrast, if the values of 7 and / are reversed to make » = 25 and 2 = 5, then the
total differential in V" becomes

AV = (2mrh)ass) dr + (wr?)ass) dh = 2507 dr + 6257 dh.

Now the volume is more sensitive to changes in /4 than to changes in r (Figure 14.35).
The general rule is that functions are most sensitive to small changes in the variables
that generate the largest partial derivatives. ]

EXAMPLE 9  Estimating Percentage Error

The volume ¥ = 772h of a right circular cylinder is to be calculated from measured values
of » and 4. Suppose that » is measured with an error of no more than 2% and 4 with an
error of no more than 0.5%. Estimate the resulting possible percentage error in the
calculation of V.

Solution We are told that

dr

- X 100‘ =2 and ‘a;lh

X 100‘ = 0.5

Since

av _ 2arh dr + wr* dh =M+@
v ar’h r h>
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we have
av| _ |, dr  dn
9)- bt
dr dh
- ‘2 ; \ L
= 2(0.02) + 0.005 = 0.045.
We estimate the error in the volume calculation to be at most 4.5%. [ |

Functions of More Than Two Variables
Analogous results hold for differentiable functions of more than two variables.
1. The linearization of f(x, y, z) at a point Py(xo, yo, Zo) is

L(x,y,z) = f(Po) + f(Po)(x — x0) + f,(Po)(y — yo) + fo(Po)(z — zo).

2. Suppose that R is a closed rectangular solid centered at Py and lying in an open region
on which the second partial derivatives of f are continuous. Suppose also that
| Fecls | foyls | fo s | foyls | faz |, and | £,-| are all less than or equal to M throughout R. Then
the error E(x,y,z) = f(x,y,z) — L(x,y,z) in the approximation of f by L is
bounded throughout R by the inequality

1
|E| = 5 M(|x — xo| + |y — yo| + |z — zo])~

3. If the second partial derivatives of f are continuous and if x, y, and z change from
X0, Yo, and zo by small amounts dx, dy, and dz, the total differential

df = fd(Py) dx + f(Po) dy + fAPo) dz

gives a good approximation of the resulting change in f.

EXAMPLE 10  Finding a Linear Approximation in 3-Space

Find the linearization L(x, y, z) of

fx,y,2z) = x> — xy + 3sinz

at the point (xo, y0, z0) = (2, 1, 0) . Find an upper bound for the error incurred in replac-
ing f by L on the rectangle

R |x—2 =001, |y—1 =002 |z =00l

Solution A routine evaluation gives

f(2,1,0) = 2, f«(2,1,0) = 3, £(2,1,0) = =2, fA2,1,0) = 3.
Thus,

L(x,y,z2) =2+ 3(x —2) + (-2)(y = 1) + 3(z — 0) = 3x — 2y + 3z — 2.

Since

for = 2, fyy =0, f=
fxy: -1, fe =0, fyz:()’

—3sinz,
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we may safely take M to be max | —3 sinz| = 3. Hence, the error incurred by replacing f
by L on R satisfies

|E| = %(3)(0.01 +0.02 + 0.01)2 = 0.0024 .

The error will be no greater than 0.0024. [
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