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Tangent Planes and Differentials

In this section we define the tangent plane at a point on a smooth surface in space. We
calculate an equation of the tangent plane from the partial derivatives of the function
defining the surface. This idea is similar to the definition of the tangent line at a point on
a curve in the coordinate plane for single-variable functions (Section 2.7). We then study
the total differential and linearization of functions of several variables.

Tangent Planes and Normal Lines

If is a smooth curve on the level surface of a
differentiable function ƒ, then Differentiating both sides of this
equation with respect to t leads to

(1)

At every point along the curve, is orthogonal to the curve’s velocity vector.
Now let us restrict our attention to the curves that pass through (Figure 14.30).

All the velocity vectors at are orthogonal to at so the curves’ tangent lines all
lie in the plane through normal to We call this plane the tangent plane of the
surface at The line through perpendicular to the plane is the surface’s normal line
at P0.
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14.6

Chain Rule

∇f
v2

v1
P0

f (x, y, z) � c

FIGURE 14.30 The gradient is
orthogonal to the velocity vector of every
smooth curve in the surface through 
The velocity vectors at therefore lie in a
common plane, which we call the tangent
plane at P0.

P0

P0.

§ƒ

DEFINITIONS Tangent Plane, Normal Line

The tangent plane at the point on the level surface 
of a differentiable function ƒ is the plane through normal to 

The normal line of the surface at is the line through parallel to §ƒ ƒ P0.P0P0

§ƒ ƒ P0.P0

ƒsx, y, zd = cP0sx0 , y0 , z0d

Thus, from Section 12.5, the tangent plane and normal line have the following equations:

Tangent Plane to at 

(2)

Normal Line to at 

(3)x = x0 + ƒxsP0dt, y = y0 + ƒysP0dt, z = z0 + ƒzsP0dt

P0sx0 , y0 , z0dƒsx, y, zd = c

ƒxsP0dsx - x0d + ƒysP0dsy - y0d + ƒzsP0dsz - z0d = 0

P0sx0 , y0, z0dƒsx, y, zd = c
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EXAMPLE 1 Finding the Tangent Plane and Normal Line

Find the tangent plane and normal line of the surface

at the point 

Solution The surface is shown in Figure 14.31.
The tangent plane is the plane through perpendicular to the gradient of ƒ at 

The gradient is

The tangent plane is therefore the plane

The line normal to the surface at is

To find an equation for the plane tangent to a smooth surface at a point
where we first observe that the equation is equiv-

alent to The surface is therefore the zero level surface of the
function The partial derivatives of F are

The formula

for the plane tangent to the level surface at therefore reduces to

ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

P0

FxsP0dsx - x0d + FysP0dsy - y0d + FzsP0dsz - z0d = 0

 Fz =

0

0z sƒsx, yd - zd = 0 - 1 =  -1.

 Fy =

0

0y sƒsx, yd - zd = fy - 0 = fy

 Fx =

0

0x sƒsx, yd - zd = fx - 0 = fx

Fsx, y, zd = ƒsx, yd - z.
z = ƒsx, ydƒsx, yd - z = 0.

z = ƒsx, ydz0 = ƒsx0, y0d,P0sx0, y0, z0d
z = ƒsx, yd

x = 1 + 2t, y = 2 + 4t, z = 4 + t.

P0

2sx - 1d + 4s y - 2d + sz - 4d = 0, or 2x + 4y + z = 14.

§ƒ ƒ P0 = s2xi + 2yj + kds1,2,4d = 2i + 4j + k.

P0 .P0

P0s1, 2, 4d .

ƒsx, y, zd = x 2
+ y 2

+ z - 9 = 0
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A circular paraboloid

z

y

x

Normal line

21

Tangent plane

The surface
x2 � y2 � z � 9 � 0

P0(1, 2, 4)

FIGURE 14.31 The tangent plane 
and normal line to the surface

at 
(Example 1).

P0s1, 2, 4dx2
+ y2

+ z - 9 = 0

Plane Tangent to a Surface at 
The plane tangent to the surface of a differentiable function ƒ at the
point is

(4)ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

sx0 , y0 , ƒsx0 , y0ddP0sx0 , y0 , z0d =

z = ƒsx, yd
sx0, y0, ƒsx0, y0ddz = ƒsx, yd

EXAMPLE 2 Finding a Plane Tangent to a Surface 

Find the plane tangent to the surface at (0, 0, 0).z = x cos y - ye x

z = ƒsx, yd
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Solution We calculate the partial derivatives of and use
Equation (4):

The tangent plane is therefore

or

EXAMPLE 3 Tangent Line to the Curve of Intersection of Two Surfaces

The surfaces

and

meet in an ellipse E (Figure 14.32). Find parametric equations for the line tangent to E at
the point 

Solution The tangent line is orthogonal to both and at and therefore parallel
to The components of v and the coordinates of give us equations for the
line. We have

The tangent line is

Estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to
estimate how much the value of a function ƒ changes if we move a small distance ds from
a point to another point nearby. If ƒ were a function of a single variable, we would have

For a function of two or more variables, we use the formula

where u is the direction of the motion away from P0.

dƒ = s§ƒ ƒ P0
# ud ds,

dƒ = ƒ¿sP0d ds.

P0

x = 1 + 2t, y = 1 - 2t, z = 3 - 2t.

 v = s2i + 2jd * si + kd = 3 i j k

2 2 0

1 0 1

3 = 2i - 2j - 2k.

 §g ƒ s1,1,3d = si + kds1,1,3d = i + k

 §ƒ ƒ s1,1,3d = s2xi + 2yjds1,1,3d = 2i + 2j

P0v = §ƒ * §g.
P0,§g§ƒ

P0s1, 1, 3d .

gsx, y, zd = x + z - 4 = 0

ƒsx, y, zd = x 2
+ y 2

- 2 = 0

x - y - z = 0.

1 # sx - 0d - 1 # s y - 0d - sz - 0d = 0,

 ƒys0, 0d = s -x sin y - e xds0,0d = 0 - 1 =  -1.

 ƒxs0, 0d = scos y - ye xds0,0d = 1 - 0 # 1 = 1

ƒsx, yd = x cos y - yex
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Equation (4)

A cylinder

A plane

Ordinary derivative * increment

Directional derivative * increment

z

y

x

∇g

(1, 1, 3)
∇f

The cylinder
x2 � y2 � 2 � 0

f (x, y, z)

∇f � ∇g

The plane
x � z � 4 � 0

g(x, y, z)

The ellipse E

FIGURE 14.32 The cylinder
and the

plane 
intersect in an ellipse E (Example 3).

gsx, y, zd = x + z - 4 = 0
ƒsx, y, zd = x 2

+ y 2
- 2 = 0
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EXAMPLE 4 Estimating Change in the Value of ƒ(x, y, z)

Estimate how much the value of

will change if the point P(x, y, z) moves 0.1 unit from straight toward

Solution We first find the derivative of ƒ at in the direction of the vector 
The direction of this vector is

The gradient of ƒ at is

Therefore,

The change dƒ in ƒ that results from moving unit away from in the direction
of u is approximately

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to replace them
with simpler ones that give the accuracy required for specific applications without being
so difficult to work with. We do this in a way that is similar to the way we find linear
replacements for functions of a single variable (Section 3.8).

Suppose the function we wish to replace is and that we want the
replacement to be effective near a point at which we know the values of and

and at which ƒ is differentiable. If we move from to any point (x, y) by increments
and then the definition of differentiability from Section 14.3

gives the change

ƒsx, yd - ƒsx0, y0d = fxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

¢y = y - y0,¢x = x - x0

sx0, y0dƒy

ƒ, ƒx,sx0, y0d
z = ƒsx, yd

dƒ = s§ƒ ƒ P0
# udsdsd = a- 2

3
bs0.1d L -0.067 unit.

P0ds = 0.1

§ƒ ƒ P0
# u = si + 2kd # a2

3
 i +

1
3

 j -
2
3

 kb =
2
3

-
4
3

= -
2
3

.

§ƒ ƒ s0,1,0d = ss y cos xdi + ssin x + 2zdj + 2ykdds0,1,0d = i + 2k.

P0

u =

P0 P1
1

ƒ P0 P1
1

ƒ

=

P0 P1
1

3
=

2
3

 i +
1
3

 j -
2
3

 k.

2i + j - 2k.
P0P1
1

=P0

P1s2, 2, -2d.
P0s0, 1, 0d

ƒsx, y, zd = y sin x + 2yz

1018 Chapter 14: Partial Derivatives

Estimating the Change in ƒ in a Direction u
To estimate the change in the value of a differentiable function ƒ when we move a
small distance ds from a point in a particular direction u, use the formula

Directional Distance
derivative increment

()*('')''*

dƒ = s§ƒ ƒ P0
# ud #  ds

P0
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where as If the increments and are small, the products
and will eventually be smaller still and we will have

In other words, as long as and are small, ƒ will have approximately the same value
as the linear function L. If ƒ is hard to use, and our work can tolerate the error involved, we
may approximate ƒ by L (Figure 14.33).

¢y¢x

Lsx, yd
(''''''''''''')'''''''''''''*

ƒsx, yd L ƒsx0 , y0d + fxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

P2¢yP1¢x
¢y¢x¢x, ¢y : 0.P1, P2 : 0
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A point
near (x0, y0)

(x, y)

	y � y � y0

	x � x � x0
(x0, y0)

A point where
f is differentiable

FIGURE 14.33 If ƒ is differentiable at
then the value of ƒ at any point

(x, y) nearby is approximately
ƒsx0 , y0d + ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

sx0 , y0d,

DEFINITIONS Linearization, Standard Linear Approximation
The linearization of a function ƒ(x, y) at a point where ƒ is differentiable
is the function

(5)

The approximation

is the standard linear approximation of ƒ at sx0 , y0d.

ƒsx, yd L Lsx, yd

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

sx0, y0d

From Equation (4), we see that the plane is tangent to the surface
at the point Thus, the linearization of a function of two variables is

a tangent-plane approximation in the same way that the linearization of a function of a
single variable is a tangent-line approximation.

EXAMPLE 5 Finding a Linearization

Find the linearization of

at the point (3, 2).

Solution We first evaluate and at the point 

giving

The linearization of ƒ at (3, 2) is  Lsx, yd = 4x - y - 2.

 = 8 + s4dsx - 3d + s -1ds y - 2d = 4x - y - 2.

 Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d

 ƒys3, 2d =

0

0y ax 2
- xy +

1
2

 y 2
+ 3b

s3,2d
= s -x + yds3,2d = -1, 

 ƒxs3, 2d =

0

0x ax 2
- xy +

1
2

 y2
+ 3b

s3,2d
= s2x - yds3,2d = 4

 ƒs3, 2d = ax2
- xy +

1
2

 y2
+ 3b

s3,2d
= 8

sx0 , y0d = s3, 2d:ƒyƒ, ƒx ,

ƒsx, yd = x2
- xy +

1
2

 y2
+ 3

sx0 , y0d.z = ƒsx, yd
z = Lsx, yd
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When approximating a differentiable function ƒ(x, y) by its linearization L(x, y) at
an important question is how accurate the approximation might be.

If we can find a common upper bound M for and on a rectangle 
R centered at (Figure 14.34), then we can bound the error E throughout R by 
using a simple formula (derived in Section 14.10). The error is defined by 
ƒsx, yd - Lsx, yd.

Esx, yd =

sx0, y0d
ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,

sx0 , y0d,

1020 Chapter 14: Partial Derivatives

The Error in the Standard Linear Approximation
If ƒ has continuous first and second partial derivatives throughout an open set
containing a rectangle R centered at and if M is any upper bound for the
values of and on R, then the error E(x, y) incurred in replacing
ƒ(x, y) on R by its linearization

satisfies the inequality

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d

ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,
sx0 , y0d

y

x
0

k
h

R

(x0, y0)

FIGURE 14.34 The rectangular region
in the

xy-plane.
R: ƒ x - x0 ƒ … h, ƒ y - y0 ƒ … k

To make small for a given M, we just make and small.

EXAMPLE 6 Bounding the Error in Example 5

Find an upper bound for the error in the approximation in Example 5
over the rectangle

Express the upper bound as a percentage of ƒ(3, 2), the value of ƒ at the center of the
rectangle.

Solution We use the inequality

To find a suitable value for M, we calculate and finding, after a routine
differentiation, that all three derivatives are constant, with values

The largest of these is 2, so we may safely take M to be 2. With we then
know that, throughout R,

Finally, since and on R, we have

As a percentage of the error is no greater than

0.04
8

* 100 = 0.5% .

ƒs3, 2d = 8,

ƒ Esx, yd ƒ … s0.1 + 0.1d2
= 0.04.

ƒ y - 2 ƒ … 0.1ƒ x - 3 ƒ … 0.1

ƒ Esx, yd ƒ …
1
2

 s2ds ƒ x - 3 ƒ + ƒ y - 2 ƒ d2
= s ƒ x - 3 ƒ + ƒ y - 2 ƒ d2.

sx0 , y0d = s3, 2d,

ƒ ƒxx ƒ = ƒ 2 ƒ = 2, ƒ ƒxy ƒ = ƒ -1 ƒ = 1, ƒ ƒyy ƒ = ƒ 1 ƒ = 1.

ƒyy,ƒxx, ƒxy,

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2 .

R: ƒ x - 3 ƒ … 0.1, ƒ y - 2 ƒ … 0.1 .

ƒsx, yd L Lsx, yd

ƒ y - y0 ƒƒ x - x0 ƒƒ Esx, yd ƒ
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Differentials

Recall from Section 3.8 that for a function of a single variable, we defined the
change in ƒ as x changes from a to by

and the differential of ƒ as

We now consider a function of two variables.
Suppose a differentiable function ƒ(x, y) and its partial derivatives exist at a point

If we move to a nearby point the change in ƒ is

A straightforward calculation from the definition of L(x, y), using the notation 
and shows that the corresponding change in L is

The differentials dx and dy are independent variables, so they can be assigned any values.
Often we take and We then have the following
definition of the differential or total differential of ƒ.

dy = ¢y = y - y0 .dx = ¢x = x - x0 ,

 = ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

 ¢L = Lsx0 + ¢x, y0 + ¢yd - Lsx0 , y0d

y - y0 = ¢y,
x - x0 = ¢x

¢ƒ = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d.

sx0 + ¢x, y0 + ¢yd,sx0 , y0d.

dƒ = ƒ¿sad¢x.

¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x
y = ƒsxd,

14.6 Tangent Planes and Differentials 1021

DEFINITION Total Differential
If we move from to a point nearby, the resulting change

in the linearization of ƒ is called the total differential of ƒ.

dƒ = ƒxsx0 , y0d dx + ƒysx0 , y0d dy

sx0 + dx, y0 + dydsx0 , y0d

EXAMPLE 7 Estimating Change in Volume

Suppose that a cylindrical can is designed to have a radius of 1 in. and a height of 5 in., but
that the radius and height are off by the amounts and Estimate
the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in we use

With and we get

 = 0.3p - 0.1p = 0.2p L 0.63 in.3

 dV = 2pr0h0 dr + pr0
2 dh = 2ps1ds5ds0.03d + ps1d2s -0.1d

Vh = pr2,Vr = 2prh

¢V L dV = Vrsr0 , h0d dr + Vhsr0 , h0d dh.

V = pr2h,

dh = -0.1.dr = +0.03
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Instead of absolute change in the value of a function ƒ(x, y), we can estimate relative
change or percentage change by

respectively. In Example 7, the relative change is estimated by

giving 4% as an estimate of the percentage change.

EXAMPLE 8 Sensitivity to Change

Your company manufactures right circular cylindrical molasses storage tanks that are 25 ft
high with a radius of 5 ft. How sensitive are the tanks’ volumes to small variations in
height and radius?

Solution With we have the approximation for the change in volume as

Thus, a 1-unit change in r will change V by about A 1-unit change in h will
change V by about The tank’s volume is 10 times more sensitive to a small change
in r than it is to a small change of equal size in h. As a quality control engineer concerned
with being sure the tanks have the correct volume, you would want to pay special atten-
tion to their radii.

In contrast, if the values of r and h are reversed to make and then the
total differential in V becomes

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.35).
The general rule is that functions are most sensitive to small changes in the variables

that generate the largest partial derivatives.

EXAMPLE 9 Estimating Percentage Error

The volume of a right circular cylinder is to be calculated from measured values
of r and h. Suppose that r is measured with an error of no more than 2% and h with an
error of no more than 0.5%. Estimate the resulting possible percentage error in the
calculation of V.

Solution We are told that

Since

dV
V

=

2prh dr + pr 2 dh
pr 2h

=

2 dr
r +

dh
h

,

` dr
r * 100 ` … 2 and ` dh

h
* 100 ` … 0.5.

V = pr2h

dV = s2prhds25,5d dr + spr 2ds25,5d dh = 250p dr + 625p dh.

h = 5,r = 25

25p units.
250p units.

 = 250p dr + 25p dh.

 = s2prhds5,25d dr + spr 2ds5,25d dh

 dV = Vrs5, 25d dr + Vhs5, 25d dh

V = pr 2h,

dV
Vsr0, h0d

=

0.2p
pr0

2h0
=

0.2p
ps1d2s5d

= 0.04,

dƒ

ƒsx0, y0d
 and dƒ

ƒsx0, y0d
* 100,

1022 Chapter 14: Partial Derivatives

(a) (b)

r � 5

r � 25
h � 25

h � 5

FIGURE 14.35 The volume of cylinder
(a) is more sensitive to a small change in r
than it is to an equally small change in h.
The volume of cylinder (b) is more
sensitive to small changes in h than it 
is to small changes in r (Example 8).
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we have

We estimate the error in the volume calculation to be at most 4.5%.

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ƒ(x, y, z) at a point is

2. Suppose that R is a closed rectangular solid centered at and lying in an open region
on which the second partial derivatives of ƒ are continuous. Suppose also that

and are all less than or equal to M throughout R. Then
the error in the approximation of ƒ by L is
bounded throughout R by the inequality

3. If the second partial derivatives of ƒ are continuous and if x, y, and z change from
and by small amounts dx, dy, and dz, the total differential

gives a good approximation of the resulting change in ƒ.

EXAMPLE 10 Finding a Linear Approximation in 3-Space

Find the linearization L(x, y, z) of

at the point Find an upper bound for the error incurred in replac-
ing ƒ by L on the rectangle

Solution A routine evaluation gives

Thus,

Since

 ƒxy = -1,  ƒxz = 0,  ƒyz = 0, 

 ƒxx = 2,  ƒyy = 0,  ƒzz = -3 sin z, 

Lsx, y, zd = 2 + 3sx - 2d + s -2ds y - 1d + 3sz - 0d = 3x - 2y + 3z - 2.

ƒs2, 1, 0d = 2, ƒxs2, 1, 0d = 3, ƒys2, 1, 0d = -2, ƒzs2, 1, 0d = 3.

R: ƒ x - 2 ƒ … 0.01, ƒ y - 1 ƒ … 0.02, ƒ z ƒ … 0.01.

sx0 , y0 , z0d = s2, 1, 0d .

ƒsx, y, zd = x2
- xy + 3 sin z

dƒ = ƒxsP0d dx + ƒysP0d dy + ƒzsP0d dz

z0x0 , y0 ,

ƒ E ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ + ƒ z - z0 ƒ d2.

Esx, y, zd = ƒsx, y, zd - Lsx, y, zd
ƒ ƒyz ƒƒ ƒxx ƒ , ƒ ƒyy ƒ , ƒ ƒzz ƒ , ƒ ƒxy ƒ , ƒ ƒxz ƒ ,

P0

Lsx, y, zd = ƒsP0d + ƒxsP0dsx - x0d + ƒysP0ds y - y0d + ƒzsP0dsz - z0d.

P0sx0 , y0 , z0d

 … 2s0.02d + 0.005 = 0.045.

 … ` 2 
dr
r ` + ` dh

h
`

 ̀
dV
V
` = ` 2 

dr
r +

dh
h
`
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we may safely take M to be max Hence, the error incurred by replacing ƒ
by L on R satisfies

The error will be no greater than 0.0024.

ƒ E ƒ …
1
2

 s3ds0.01 + 0.02 + 0.01d2
= 0.0024 .

ƒ -3 sin z ƒ = 3.

1024 Chapter 14: Partial Derivatives
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