EXERCISES 14.6

Tangent Planes and Normal Lines to Surfaces

In Exercises 1-8, find equations for the

(a) tangent plane and (b) normal line at the point P_0 on the given surface. 1. $x^2 + y^2 + z^2 = 3$, $P_0(1, 1, 1)$ 2. $x^2 + y^2 - z^2 = 18$, $P_0(3, 5, -4)$ 3. $2z - x^2 = 0$, $P_0(2, 0, 2)$ 4. $x^2 + 2xy - y^2 + z^2 = 7$, $P_0(1, -1, 3)$ 5. $\cos \pi x - x^2 y + e^{xz} + yz = 4$, $P_0(0, 1, 2)$ 6. $x^2 - xy - y^2 - z = 0$, $P_0(1, 1, -1)$ 7. x + y + z = 1, $P_0(0, 1, 0)$ 8. $x^2 + y^2 - 2xy - x + 3y - z = -4$, $P_0(2, -3, 18)$

In Exercises 9–12, find an equation for the plane that is tangent to the given surface at the given point.

9. $z = \ln (x^2 + y^2)$, (1, 0, 0) **10.** $z = e^{-(x^2 + y^2)}$, (0, 0, 1) **11.** $z = \sqrt{y - x}$, (1, 2, 1) **12.** $z = 4x^2 + y^2$, (1, 1, 5)

Tangent Lines to Curves

In Exercises 13–18, find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point.

13. Surfaces: $x + y^2 + 2z = 4$, x = 1Point: (1, 1, 1) 14. Surfaces: xvz = 1, $x^2 + 2v^2 + 3z^2 = 6$ Point: (1, 1, 1) 15. Surfaces: $x^2 + 2v + 2z = 4$, v = 1Point: (1, 1, 1/2)16. Surfaces: $x + y^2 + z = 2$, y = 1Point: (1/2, 1, 1/2)17. Surfaces: $x^3 + 3x^2v^2 + v^3 + 4xv - z^2 = 0$, $x^2 + v^2 + z^2$ = 11Point: (1, 1, 3)**18.** Surfaces: $x^2 + y^2 = 4$, $x^2 + y^2 - z = 0$ $(\sqrt{2}, \sqrt{2}, 4)$ Point:

Estimating Change

19. By about how much will

$$f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$$

change if the point P(x, y, z) moves from $P_0(3, 4, 12)$ a distance of ds = 0.1 unit in the direction of $3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$?

20. By about how much will

$$f(x, y, z) = e^x \cos yz$$

change as the point P(x, y, z) moves from the origin a distance of ds = 0.1 unit in the direction of $2\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$?

21. By about how much will

$$g(x, y, z) = x + x \cos z - y \sin z + y$$

change if the point P(x, y, z) moves from $P_0(2, -1, 0)$ a distance of ds = 0.2 unit toward the point $P_1(0, 1, 2)$?

22. By about how much will

$$h(x, y, z) = \cos(\pi x y) + x z^2$$

change if the point P(x, y, z) moves from $P_0(-1, -1, -1)$ a distance of ds = 0.1 unit toward the origin?

- **23. Temperature change along a circle** Suppose that the Celsius temperature at the point (x, y) in the *xy*-plane is $T(x, y) = x \sin 2y$ and that distance in the *xy*-plane is measured in meters. A particle is moving *clockwise* around the circle of radius 1 m centered at the origin at the constant rate of 2 m/sec.
 - **a.** How fast is the temperature experienced by the particle changing in degrees Celsius per meter at the point $P(1/2, \sqrt{3}/2)$?
 - **b.** How fast is the temperature experienced by the particle changing in degrees Celsius per second at *P*?
- 24. Changing temperature along a space curve The Celsius temperature in a region in space is given by $T(x, y, z) = 2x^2 xyz$. A particle is moving in this region and its position at time t is given by $x = 2t^2$, y = 3t, $z = -t^2$, where time is measured in seconds and distance in meters.

- **a.** How fast is the temperature experienced by the particle changing in degrees Celsius per meter when the particle is at the point P(8, 6, -4)?
- **b.** How fast is the temperature experienced by the particle changing in degrees Celsius per second at *P*?

Finding Linearizations

In Exercises 25–30, find the linearization L(x, y) of the function at each point.

25. $f(x, y) = x^2 + y^2 + 1$ at	a. (0, 0),	b. (1, 1)
26. $f(x, y) = (x + y + 2)^2$ at	a. (0, 0),	b. (1, 2)
27. $f(x, y) = 3x - 4y + 5$ at	a. (0, 0),	b. (1, 1)
28. $f(x, y) = x^3 y^4$ at	a. (1, 1),	b. (0, 0)
29. $f(x, y) = e^x \cos y$ at	a. (0, 0),	b. $(0, \pi/2)$
30. $f(x, y) = e^{2y-x}$ at	a. (0, 0),	b. (1, 2)

Upper Bounds for Errors in Linear Approximations

In Exercises 31–36, find the linearization L(x, y) of the function f(x, y) at P_0 . Then find an upper bound for the magnitude |E| of the error in the approximation $f(x, y) \approx L(x, y)$ over the rectangle *R*.

31.
$$f(x, y) = x^2 - 3xy + 5$$
 at $P_0(2, 1)$,
 $R: |x - 2| \le 0.1, |y - 1| \le 0.1$
32. $f(x, y) = (1/2)x^2 + xy + (1/4)y^2 + 3x - 3y + 4$ at $P_0(2, 2)$
 $R: |x - 2| \le 0.1, |y - 2| \le 0.1$
33. $f(x, y) = 1 + y + x \cos y$ at $P_0(0, 0)$,
 $R: |x| \le 0.2, |y| \le 0.2$
(Use $|\cos y| \le 1$ and $|\sin y| \le 1$ in estimating *E*.)
34. $f(x, y) = xy^2 + y \cos (x - 1)$ at $P_0(1, 2)$,
 $P_1 + |x - 1| \le 0.1, |y - 2| \le 0.1$

$$R: |x - 1| \le 0.1, |y - 2| \le 0.1$$

35.
$$f(x, y) = e^x \cos y$$
 at $P_0(0, 0)$,

R:
$$|x| \le 0.1$$
, $|y| \le 0.1$

(Use
$$e^x \le 1.11$$
 and $|\cos y| \le 1$ in estimating *E*.)

36.
$$f(x, y) = \ln x + \ln y$$
 at $P_0(1, 1)$,
 $R: |x - 1| \le 0.2, |y - 1| \le 0.2$

Functions of Three Variables

Find the linearizations L(x, y, z) of the functions in Exercises 37–42 at the given points.

37.	f(x, y, z) = xy + yz + xz at		
	a. (1, 1, 1)	b. (1, 0, 0)	c. (0, 0, 0)
38.	$f(x, y, z) = x^2 + y^2 + z^2$ at		
	a. (1, 1, 1)	b. (0, 1, 0)	c. (1, 0, 0)
39.	9. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at		
	a. (1, 0, 0)	b. (1, 1, 0)	c. (1, 2, 2)

40.
$$f(x, y, z) = (\sin xy)/z$$
 at
a. $(\pi/2, 1, 1)$ **b.** $(2, 0, 1)$
41. $f(x, y, z) = e^x + \cos(y + z)$ at
a. $(0, 0, 0)$ **b.** $\left(0, \frac{\pi}{2}, 0\right)$ **c.** $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$
42. $f(x, y, z) = \tan^{-1}(xyz)$ at
a. $(1, 0, 0)$ **b.** $(1, 1, 0)$ **c.** $(1, 1, 1)$

In Exercises 43–46, find the linearization L(x, y, z) of the function f(x, y, z) at P_0 . Then find an upper bound for the magnitude of the error *E* in the approximation $f(x, y, z) \approx L(x, y, z)$ over the region *R*.

43.
$$f(x, y, z) = xz - 3yz + 2$$
 at $P_0(1, 1, 2)$
 $R: |x - 1| \le 0.01, |y - 1| \le 0.01, |z - 2| \le 0.02$
44. $f(x, y, z) = x^2 + xy + yz + (1/4)z^2$ at $P_0(1, 1, 2)$
 $R: |x - 1| \le 0.01, |y - 1| \le 0.01, |z - 2| \le 0.08$
45. $f(x, y, z) = xy + 2yz - 2yz$ at $P_0(1, 1, 0)$

45.
$$f(x, y, z) = xy + 2yz - 3xz$$
 at $P_0(1, 1, 0)$
 $R: |x - 1| \le 0.01, |y - 1| \le 0.01, |z| \le 0.01$

46.
$$f(x, y, z) = \sqrt{2} \cos x \sin (y + z)$$
 at $P_0(0, 0, \pi/4)$
 $R: |x| \le 0.01, |y| \le 0.01, |z - \pi/4| \le 0.01$

Estimating Error; Sensitivity to Change

- **47. Estimating maximum error** Suppose that *T* is to be found from the formula $T = x (e^y + e^{-y})$, where *x* and *y* are found to be 2 and ln 2 with maximum possible errors of |dx| = 0.1 and |dy| = 0.02. Estimate the maximum possible error in the computed value of *T*.
- **48. Estimating volume of a cylinder** About how accurately may $V = \pi r^2 h$ be calculated from measurements of *r* and *h* that are in error by 1%?
- **49.** Maximum percentage error If r = 5.0 cm and h = 12.0 cm to the nearest millimeter, what should we expect the maximum percentage error in calculating $V = \pi r^2 h$ to be?
- **50. Variation in electrical resistance** The resistance R produced by wiring resistors of R_1 and R_2 ohms in parallel (see accompanying figure) can be calculated from the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

a. Show that

$$dR = \left(\frac{R}{R_1}\right)^2 dR_1 + \left(\frac{R}{R_2}\right)^2 dR_2.$$

b. You have designed a two-resistor circuit like the one shown on the next page to have resistances of $R_1 = 100$ ohms and $R_2 = 400$ ohms, but there is always some variation in manufacturing and the resistors received by your firm will probably not have these exact values. Will the value of *R* be

more sensitive to variation in R_1 or to variation in R_2 ? Give reasons for your answer.

- **c.** In another circuit like the one shown you plan to change *R*₁ from 20 to 20.1 ohms and *R*₂ from 25 to 24.9 ohms. By about what percentage will this change *R*?
- **51.** You plan to calculate the area of a long, thin rectangle from measurements of its length and width. Which dimension should you measure more carefully? Give reasons for your answer.
- 52. a. Around the point (1, 0), is $f(x, y) = x^2(y + 1)$ more sensitive to changes in x or to changes in y? Give reasons for your answer.
 - **b.** What ratio of dx to dy will make df equal zero at (1, 0)?
- 53. Error carryover in coordinate changes

- **a.** If $x = 3 \pm 0.01$ and $y = 4 \pm 0.01$, as shown here, with approximately what accuracy can you calculate the polar coordinates *r* and θ of the point *P*(*x*, *y*) from the formulas $r^2 = x^2 + y^2$ and $\theta = \tan^{-1}(y/x)$? Express your estimates as percentage changes of the values that *r* and θ have at the point (x_0 , y_0) = (3, 4).
- **b.** At the point $(x_0, y_0) = (3, 4)$, are the values of *r* and θ more sensitive to changes in *x* or to changes in *y*? Give reasons for your answer.
- 54. Designing a soda can A standard 12-fl oz can of soda is essentially a cylinder of radius r = 1 in. and height h = 5 in.
 - **a.** At these dimensions, how sensitive is the can's volume to a small change in radius versus a small change in height?
 - **b.** Could you design a soda can that *appears* to hold more soda but in fact holds the same 12-fl oz? What might its dimensions be? (There is more than one correct answer.)

55. Value of a 2 × 2 determinant If |a| is much greater than |b|, |c|, and |d|, to which of *a*, *b*, *c*, and *d* is the value of the determinant

$$f(a, b, c, d) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

most sensitive? Give reasons for your answer.

- 56. Estimating maximum error Suppose that $u = xe^{y} + y \sin z$ and that x, y, and z can be measured with maximum possible errors of ± 0.2 , ± 0.6 , and $\pm \pi/180$, respectively. Estimate the maximum possible error in calculating u from the measured values x = 2, $y = \ln 3$, $z = \pi/2$.
- **57. The Wilson lot size formula** The Wilson lot size formula in economics says that the most economical quantity Q of goods (radios, shoes, brooms, whatever) for a store to order is given by the formula $Q = \sqrt{2KM/h}$, where K is the cost of placing the order, M is the number of items sold per week, and h is the weekly holding cost for each item (cost of space, utilities, security, and so on). To which of the variables K, M, and h is Q most sensitive near the point (K_0 , M_0 , h_0) = (2, 20, 0.05)? Give reasons for your answer.
- **58.** Surveying a triangular field The area of a triangle is $(1/2)ab \sin C$, where *a* and *b* are the lengths of two sides of the triangle and *C* is the measure of the included angle. In surveying a triangular plot, you have measured *a*, *b*, and *C* to be 150 ft, 200 ft, and 60°, respectively. By about how much could your area calculation be in error if your values of *a* and *b* are off by half a foot each and your measurement of *C* is off by 2°? See the accompanying figure. Remember to use radians.

Theory and Examples

59. The linearization of f(x, y) is a tangent-plane approximation Show that the tangent plane at the point $P_0(x_0, y_0)$, $f(x_0, y_0)$) on the surface z = f(x, y) defined by a differentiable function f is the plane

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0$$

or

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Thus, the tangent plane at P_0 is the graph of the linearization of f at P_0 (see accompanying figure).

60. Change along the involute of a circle Find the derivative of $f(x, y) = x^2 + y^2$ in the direction of the unit tangent vector of the curve

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \qquad t > 0.$$

61. Change along a helix Find the derivative of $f(x, y, z) = x^2 + y^2 + z^2$ in the direction of the unit tangent vector of the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$$

at the points where $t = -\pi/4$, 0, and $\pi/4$. The function f gives the square of the distance from a point P(x, y, z) on the helix to the origin. The derivatives calculated here give the rates at which the square of the distance is changing with respect to t as P moves through the points where $t = -\pi/4$, 0, and $\pi/4$.

62. Normal curves A smooth curve is *normal* to a surface f(x, y, z) = c at a point of intersection if the curve's velocity vector is a nonzero scalar multiple of ∇f at the point.

Show that the curve

$$\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \sqrt{t}\mathbf{j} - \frac{1}{4}(t+3)\mathbf{k}$$

is normal to the surface $x^2 + y^2 - z = 3$ when t = 1.

63. Tangent curves A smooth curve is *tangent* to the surface at a point of intersection if its velocity vector is orthogonal to ∇f there.

Show that the curve

$$\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \sqrt{t}\mathbf{j} + (2t-1)\mathbf{k}$$

is tangent to the surface $x^2 + y^2 - z = 1$ when t = 1.