
1024 Chapter 14: Partial Derivatives

EXERCISES 14.6

Tangent Planes and Normal Lines to Surfaces
In Exercises 1–8, find equations for the

(a) tangent plane and (b) normal line at the point on the given
surface.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, find an equation for the plane that is tangent to
the given surface at the given point.

9. 10.

11. 12.

Tangent Lines to Curves
In Exercises 13–18, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

13. Surfaces:

Point:       (1, 1, 1)

14. Surfaces:

Point:       (1, 1, 1)

15. Surfaces:

Point:       (1, 1, 1 2)

16. Surfaces:

Point:       (1 2, 1, 1 2)

17. Surfaces:

Point: (1, 1, 3)

18. Surfaces:

Point:       A22, 22, 4 B
x 2

+ y 2
= 4, x 2

+ y 2
- z = 0

= 11
x 2

+ y 2
+ z 2x 3

+ 3x 2y 2
+ y 3

+ 4xy - z 2
= 0, 

>>
x + y 2

+ z = 2, y = 1

>
x 2

+ 2y + 2z = 4, y = 1

xyz = 1, x 2
+ 2y 2

+ 3z 2
= 6

x + y 2
+ 2z = 4, x = 1

z = 4x 2
+ y 2, s1, 1, 5dz = 2y - x, s1, 2, 1d

z = e-sx2
+ y2d, s0, 0, 1dz = ln sx 2

+ y 2d, s1, 0, 0d

x2
+ y2

- 2xy - x + 3y - z = -4, P0s2, -3, 18d
x + y + z = 1, P0s0, 1, 0d
x 2

- xy - y 2
- z = 0, P0s1, 1, -1d

cos px - x2y + e xz
+ yz = 4, P0s0, 1, 2d

x 2
+ 2xy - y 2

+ z 2
= 7, P0s1, -1, 3d

2z - x 2
= 0, P0s2, 0, 2d

x 2
+ y 2

- z 2
= 18, P0s3, 5, -4d

x 2
+ y 2

+ z 2
= 3, P0s1, 1, 1d

P0

Estimating Change
19. By about how much will

change if the point P(x, y, z) moves from a distance
of unit in the direction of 

20. By about how much will

change as the point P(x, y, z) moves from the origin a distance of
unit in the direction of 

21. By about how much will

change if the point P(x, y, z) moves from a distance
of unit toward the point 

22. By about how much will

change if the point P(x, y, z) moves from a dis-
tance of unit toward the origin?

23. Temperature change along a circle Suppose that the Celsius
temperature at the point (x, y) in the xy-plane is 
and that distance in the xy-plane is measured in meters. A particle
is moving clockwise around the circle of radius 1 m centered at
the origin at the constant rate of 2 m sec.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter at the point

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by 
A particle is moving in this region and its position at time t is
given by where time is measured in
seconds and distance in meters.

x = 2t2, y = 3t, z = - t2,

2x2
- xyz.T sx, y, zd =

P A1>2, 23>2 B?

>

T sx, yd = x sin 2y

ds = 0.1
P0s -1, -1, -1d

hsx, y, zd = cos spxyd + xz 2

P1s0, 1, 2)?ds = 0.2
P0s2, -1, 0d

gsx, y, zd = x + x cos z - y sin z + y

2i + 2j - 2k?ds = 0.1

ƒsx, y, zd = e x cos yz

3i + 6j - 2k?ds = 0.1
P0s3, 4, 12d

ƒsx, y, zd = ln2x 2
+ y 2

+ z 2
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a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter when the particle is at
the point 

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

Finding Linearizations
In Exercises 25–30, find the linearization L(x, y) of the function at
each point.

25. at a. (0, 0), b. (1, 1)

26. at a. (0, 0), b. (1, 2)

27. at a. (0, 0), b. (1, 1)

28. at a. (1, 1), b. (0, 0)

29. at a. (0, 0), b.

30. at a. (0, 0), b. (1, 2)

Upper Bounds for Errors in Linear Approximations
In Exercises 31–36, find the linearization L(x, y) of the function
ƒ(x, y) at Then find an upper bound for the magnitude of the
error in the approximation over the rectangle R.

31.

32.

33.

34.

35.

36.

Functions of Three Variables
Find the linearizations L(x, y, z) of the functions in Exercises 37–42
at the given points.

37.

a. (1, 1, 1) b. (1, 0, 0) c. (0, 0, 0)

38.

a. (1, 1, 1) b. (0, 1, 0) c. (1, 0, 0)

39. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 2, 2)

ƒsx, y, zd = 2x 2
+ y 2

+ z 2

ƒsx, y, zd = x 2
+ y 2

+ z 2 at

ƒsx, y, zd = xy + yz + xz at

R: ƒ x - 1 ƒ … 0.2, ƒ y - 1 ƒ … 0.2

ƒsx, yd = ln x + ln y at P0s1, 1d,
sUse ex

… 1.11 and ƒ cos y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.1, ƒ y ƒ … 0.1

ƒsx, yd = ex cos y at P0s0, 0d,
R: ƒ x - 1 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = xy2
+ y cos sx - 1d at P0s1, 2d,

sUse ƒ cos y ƒ … 1 and ƒ sin y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.2, ƒ y ƒ … 0.2

ƒsx, yd = 1 + y + x cos y at P0s0, 0d,
R: ƒ x - 2 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = s1>2dx2
+ xy + s1>4dy2

+ 3x - 3y + 4 at P0s2, 2d,
R: ƒ x - 2 ƒ … 0.1, ƒ y - 1 ƒ … 0.1

ƒsx, yd = x2
- 3xy + 5 at P0s2, 1d,

ƒsx, yd L Lsx, yd
ƒ E ƒP0.

ƒsx, yd = e 2y - x

s0, p>2dƒsx, yd = e x cos y

ƒsx, yd = x3y4

ƒsx, yd = 3x - 4y + 5

ƒsx, yd = sx + y + 2d2

ƒsx, yd = x 2
+ y 2

+ 1

Ps8, 6, -4d?

40. at

a. b. (2, 0, 1)

41. at

a. (0, 0, 0) b. c.

42. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 1, 1)

In Exercises 43–46, find the linearization L(x, y, z) of the function
ƒ(x, y, z) at Then find an upper bound for the magnitude of the
error E in the approximation over the region R.

43.

44.

45.

46.

Estimating Error; Sensitivity to Change
47. Estimating maximum error Suppose that T is to be found

from the formula where x and y are found to
be 2 and ln 2 with maximum possible errors of and

Estimate the maximum possible error in the com-
puted value of T.

48. Estimating volume of a cylinder About how accurately may
be calculated from measurements of r and h that are in

error by 1%?

49. Maximum percentage error If and 
to the nearest millimeter, what should we expect the maximum
percentage error in calculating to be?

50. Variation in electrical resistance The resistance R produced
by wiring resistors of and ohms in parallel (see accompany-
ing figure) can be calculated from the formula

a. Show that

b. You have designed a two-resistor circuit like the one shown on
the next page to have resistances of and

but there is always some variation in
manufacturing and the resistors received by your firm will
probably not have these exact values. Will the value of R be

R2 = 400 ohms,
R1 = 100 ohms

dR = a R
R1
b2

 dR1 + a R
R2
b2

 dR2.

1
R

=

1
R1

+

1
R2

.

R2R1

V = pr 2h

h = 12.0 cmr = 5.0 cm

V = pr 2h

0.02.ƒ dy ƒ =

ƒ dx ƒ = 0.1
T = x se y

+ e-yd,

R: ƒ x ƒ … 0.01, ƒ y ƒ … 0.01, ƒ z - p>4 ƒ … 0.01

ƒsx, y, zd = 22 cos x sin s y + zd at P0s0, 0, p>4d

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z ƒ … 0.01

ƒsx, y, zd = xy + 2yz - 3xz at P0s1, 1, 0d
R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.08

ƒsx, y, zd = x 2
+ xy + yz + s1>4dz2 at P0s1, 1, 2d

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.02

ƒsx, y, zd = xz - 3yz + 2 at P0s1, 1, 2d
ƒsx, y, zd L Lsx, y, zd

P0.

ƒsx, y, zd = tan-1 sxyzd

a0, 
p

4
, 
p

4
ba0, 

p

2
, 0b

ƒsx, y, zd = e x
+ cos s y + zd

sp>2, 1, 1d
ƒsx, y, zd = ssin xyd>z

14.6 Tangent Planes and Differentials 1025

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 1025

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1406d.html
tcu1406d.html
tcu1406e.html
tcu1406e.html
tcu1406f.html
tcu1406f.html
tcu1406g.html
tcu1406g.html
tcu1406g.html
tcu1406g.html
tcu1406h.html
tcu1406h.html
tcu1406i.html
tcu1406i.html


more sensitive to variation in or to variation in Give
reasons for your answer.

c. In another circuit like the one shown you plan to change 
from 20 to 20.1 ohms and from 25 to 24.9 ohms. By about
what percentage will this change R?

51. You plan to calculate the area of a long, thin rectangle from
measurements of its length and width. Which dimension should
you measure more carefully? Give reasons for your answer.

52. a. Around the point (1, 0), is more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

b. What ratio of dx to dy will make dƒ equal zero at (1, 0)?

53. Error carryover in coordinate changes

a. If and as shown here, with
approximately what accuracy can you calculate the polar
coordinates r and of the point P(x, y) from the formulas

and Express your estimates
as percentage changes of the values that r and have at the
point 

b. At the point are the values of r and more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

54. Designing a soda can A standard 12-fl oz can of soda is essen-
tially a cylinder of radius and height 

a. At these dimensions, how sensitive is the can’s volume to a
small change in radius versus a small change in height?

b. Could you design a soda can that appears to hold more soda
but in fact holds the same 12-fl oz? What might its
dimensions be? (There is more than one correct answer.)

h = 5 in.r = 1 in.

usx0, y0d = s3, 4d,
sx0, y0d = s3, 4d.

u

u = tan-1 s y>xd?r 2
= x 2

+ y 2
u

y = 4 ; 0.01,x = 3 ; 0.01

y

x
0

4

3

r

�

P(3 ; 0.01, 4 ; 0.01)

ƒsx, yd = x 2s y + 1d

R2

R1

�

�
V R1 R2

R2?R1 55. Value of a determinant If is much greater than 
and to which of a, b, c, and d is the value of the determinant

most sensitive? Give reasons for your answer.

56. Estimating maximum error Suppose that 
and that x, y, and z can be measured with maximum possible er-
rors of and respectively. Estimate the max-
imum possible error in calculating u from the measured values

57. The Wilson lot size formula The Wilson lot size formula in
economics says that the most economical quantity Q of goods
(radios, shoes, brooms, whatever) for a store to order is given by
the formula where K is the cost of placing the
order, M is the number of items sold per week, and h is the
weekly holding cost for each item (cost of space, utilities,
security, and so on). To which of the variables K, M, and h is Q
most sensitive near the point Give
reasons for your answer.

58. Surveying a triangular field The area of a triangle is 
(1 2)ab sin C, where a and b are the lengths of two sides of the
triangle and C is the measure of the included angle. In surveying a
triangular plot, you have measured a, b, and C to be 150 ft, 200 ft,
and 60°, respectively. By about how much could your area calcu-
lation be in error if your values of a and b are off by half a foot
each and your measurement of C is off by 2°? See the accompa-
nying figure. Remember to use radians.

Theory and Examples
59. The linearization of ƒ(x, y) is a tangent-plane approximation

Show that the tangent plane at the point on
the surface defined by a differentiable function ƒ is
the plane

or

Thus, the tangent plane at is the graph of the linearization of ƒ
at (see accompanying figure).P0

P0

z = ƒsx0, y0d + ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d.

ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d - sz - ƒsx0, y0dd = 0

z = ƒsx, yd
P0sx0, y0d, ƒsx0, y0dd

a � 150 ;    ft1
2

b � 200 ;    ft1
2

C � 60° ; 2°

>

sK0, M0, h0d = s2, 20, 0.05d?

Q = 22KM>h ,

x = 2,  y = ln 3,  z = p>2.

;p>180,;0.2, ;0.6,

u = xe y
+ y sin z

ƒsa, b, c, dd = ` a b

c d
`

ƒ d ƒ ,
ƒ b ƒ , ƒ c ƒ ,ƒ a ƒ2 : 2
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at the points where and The function ƒ gives
the square of the distance from a point P(x, y, z) on the helix to
the origin. The derivatives calculated here give the rates at which
the square of the distance is changing with respect to t as P moves
through the points where and 

62. Normal curves A smooth curve is normal to a surface
at a point of intersection if the curve’s velocity

vector is a nonzero scalar multiple of at the point.
Show that the curve

is normal to the surface when 

63. Tangent curves A smooth curve is tangent to the surface at a
point of intersection if its velocity vector is orthogonal to 
there.

Show that the curve

is tangent to the surface when t = 1.x 2
+ y 2

- z = 1

rstd = 2t i + 2t j + s2t - 1dk

§f

t = 1.x 2
+ y 2

- z = 3

rstd = 2t i + 2t j -

1
4

 st + 3dk

§ƒ
ƒsx, y, zd = c

p>4.t = -p>4, 0,

p>4.t = -p>4, 0,

1027

60. Change along the involute of a circle Find the derivative of
in the direction of the unit tangent vector of

the curve

61. Change along a helix Find the derivative of 
in the direction of the unit tangent vector of the

helix

rstd = scos tdi + ssin tdj + tk

x 2
+ y 2

+ z 2
ƒsx, y, zd =

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0.

ƒsx, yd = x 2
+ y 2

z

x

y

(x0,  y0)

z � L(x, y)

z � f (x, y)

(x0,  y0,  f (x0, y0))
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