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Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded do-
mains (see Figures 14.36 and 14.37). We see in this section that we can narrow the search
for these extreme values by examining the functions’ first partial derivatives. A function of
two variables can assume extreme values only at domain boundary points or at interior do-
main points where both first partial derivatives are zero or where one or both of the first
partial derivatives fails to exist. However, the vanishing of derivatives at an interior point
(a, b) does not always signal the presence of an extreme value. The surface that is the
graph of the function might be shaped like a saddle right above (a, b) and cross its tangent
plane there.

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function ƒ(x, y) of two variables, we look
for points where the surface has a horizontal tangent plane. At such points, we
then look for local maxima, local minima, and saddle points (more about saddle points in a
moment).

z = ƒsx, yd
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FIGURE 14.36 The function

has a maximum value of 1 and a minimum
value of about on the square
region ƒ x ƒ … 3p>2, ƒ y ƒ … 3p>2.
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Local maxima correspond to mountain peaks on the surface and local minima
correspond to valley bottoms (Figure 14.38). At such points the tangent planes, when they
exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema is a
first derivative test.

z = ƒsx, yd
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FIGURE 14.37 The “roof surface”

viewed from the point (10, 15, 20). The
defining function has a maximum value of
0 and a minimum value of on the
square region ƒ x ƒ … a, ƒ y ƒ … a .
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DEFINITIONS Local Maximum, Local Minimum
Let ƒ(x, y) be defined on a region R containing the point (a, b). Then

1. ƒ(a, b) is a local maximum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

2. ƒ(a, b) is a local minimum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

ƒsa, bd … ƒsx, yd

ƒsa, bd Ú ƒsx, yd
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g(x) � f (x, b)

FIGURE 14.39 If a local maximum of ƒ
occurs at then the first
partial derivatives and are
both zero.

ƒysa, bdƒxsa, bd
x = a, y = b ,

Local maxima
(no greater value of f nearby)

Local minimum
(no smaller value
of f nearby)

FIGURE 14.38 A local maximum is a mountain peak and a local
minimum is a valley low.

THEOREM 10 First Derivative Test for Local Extreme Values
If ƒ(x, y) has a local maximum or minimum value at an interior point (a, b) of its
domain and if the first partial derivatives exist there, then and
ƒysa, bd = 0.

ƒxsa, bd = 0

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson
(1781–1840)

Proof If ƒ has a local extremum at (a, b), then the function has a local ex-
tremum at (Figure 14.39). Therefore, (Chapter 4, Theorem 2). Now

so A similar argument with the function 
shows that 

If we substitute the values and into the equation

for the tangent plane to the surface at (a, b), the equation reduces to

or

z = ƒsa, bd.

0 # sx - ad + 0 # s y - bd - z + ƒsa, bd = 0

z = ƒsx, yd

ƒxsa, bdsx - ad + ƒysa, bds y - bd - sz - ƒsa, bdd = 0

ƒysa, bd = 0ƒxsa, bd = 0

ƒysa, bd = 0.
hsyd = ƒsa, ydƒxsa, bd = 0.g¿sad = ƒxsa, bd,

g¿sad = 0x = a
gsxd = ƒsx, bd
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EXAMPLE 1 Finding Local Extreme Values

Find the local extreme values of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extreme values
can occur only where

The only possibility is the origin, where the value of ƒ is zero. Since ƒ is never negative,
we see that the origin gives a local minimum (Figure 14.41).

EXAMPLE 2 Identifying a Saddle Point

Find the local extreme values (if any) of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extrema can
occur only at the origin (0, 0). Along the positive x-axis, however, ƒ has the value

along the positive y-axis, ƒ has the value There-
fore, every open disk in the xy-plane centered at (0, 0) contains points where the function
is positive and points where it is negative. The function has a saddle point at the origin
(Figure 14.42) instead of a local extreme value. We conclude that the function has no local
extreme values.

That at an interior point (a, b) of R does not guarantee ƒ has a local ex-
treme value there. If ƒ and its first and second partial derivatives are continuous on R, how-
ever, we may be able to learn more from the following theorem, proved in Section 14.10.

ƒx = ƒy = 0

ƒs0, yd = y2
7 0.ƒsx, 0d = -x2

6 0;

ƒy = 2yƒx = -2x

ƒsx, yd = y2
- x2.

ƒx = 2x = 0 and ƒy = 2y = 0.

ƒy = 2yƒx = 2x

ƒsx, yd = x2
+ y2.

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a lo-
cal extremum, provided there is a tangent plane there.
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DEFINITION Critical Point
An interior point of the domain of a function ƒ(x, y) where both and are zero
or where one or both of and do not exist is a critical point of ƒ.ƒyƒx

ƒyƒx

DEFINITION Saddle Point
A differentiable function ƒ(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, y) where

and domain points where The corre-
sponding point (a, b, ƒ(a, b)) on the surface is called a saddle point of
the surface (Figure 14.40).

z = ƒsx, yd
ƒsx, yd 6 ƒsa, bd.sx, ydƒsx, yd 7 ƒsa, bd

x
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z

y

z �
xy (x2 � y2)

x2 � y2

z � y2 � y4 � x2

FIGURE 14.40 Saddle points at the
origin.

z

y
x

z � x2 � y2

FIGURE 14.41 The graph of the function
is the paraboloid

The function has a local
minimum value of 0 at the origin
(Example 1).

z = x2
+ y2.

ƒsx, yd = x2
+ y2

Theorem 10 says that the only points where a function ƒ(x, y) can assume extreme val-
ues are critical points and boundary points. As with differentiable functions of a single
variable, not every critical point gives rise to a local extremum. A differentiable function
of a single variable might have a point of inflection. A differentiable function of two vari-
ables might have a saddle point.
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y

z

x

z � y2 � x2

FIGURE 14.42 The origin is a saddle
point of the function 
There are no local extreme values
(Example 2).

ƒsx, yd = y2
- x2.

THEOREM 11 Second Derivative Test for Local Extreme Values
Suppose that ƒ(x, y) and its first and second partial derivatives are continuous
throughout a disk centered at (a, b) and that Then

i. ƒ has a local maximum at (a, b) if and at (a, b).

ii. ƒ has a local minimum at (a, b) if and at (a, b).

iii. ƒ has a saddle point at (a, b) if at (a, b).

iv. The test is inconclusive at (a, b) if at (a, b). In this case,
we must find some other way to determine the behavior of ƒ at (a, b).

ƒxx ƒyy - ƒxy
2

= 0

ƒxx ƒyy - ƒxy
2

6 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0 .

The expression is called the discriminant or Hessian of ƒ. It is some-
times easier to remember it in determinant form,

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface
curves the same way in all directions: downward if giving rise to a local maxi-
mum, and upward if giving a local minimum. On the other hand, if the discrimi-
nant is negative at (a, b), then the surface curves up in some directions and down in others,
so we have a saddle point.

EXAMPLE 3 Finding Local Extreme Values

Find the local extreme values of the function

Solution The function is defined and differentiable for all x and y and its domain has
no boundary points. The function therefore has extreme values only at the points where 
and are simultaneously zero. This leads to

or

Therefore, the point is the only point where ƒ may take on an extreme value. To
see if it does so, we calculate

The discriminant of ƒ at is

The combination

tells us that ƒ has a local maximum at The value of ƒ at this point is
ƒs -2, -2d = 8.

s -2, -2d .

ƒxx 6 0 and ƒxx ƒyy - ƒxy
2

7 0

ƒxx ƒyy - ƒxy
2

= s -2ds -2d - s1d2
= 4 - 1 = 3.

sa, bd = s -2, -2d

ƒxx = -2, ƒyy = -2, ƒxy = 1.

s -2, -2d

x = y = -2.

ƒx = y - 2x - 2 = 0, ƒy = x - 2y - 2 = 0,

ƒy

ƒx

ƒsx, yd = xy - x2
- y2

- 2x - 2y + 4.

ƒxx 7 0,
ƒxx 6 0,

ƒxx ƒyy - ƒxy
2

= p ƒxx ƒxy

ƒxy ƒyy
p .

ƒxx ƒyy - ƒxy
2
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EXAMPLE 4 Searching for Local Extreme Values

Find the local extreme values of 

Solution Since ƒ is differentiable everywhere (Figure 14.43), it can assume extreme
values only where

Thus, the origin is the only point where ƒ might have an extreme value. To see what hap-
pens there, we calculate

The discriminant,

is negative. Therefore, the function has a saddle point at (0, 0). We conclude that
has no local extreme values.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function ƒ(x, y) on a
closed and bounded region R into three steps.

1. List the interior points of R where ƒ may have local maxima and minima and evaluate
ƒ at these points. These are the critical points of ƒ.

2. List the boundary points of R where ƒ has local maxima and minima and evaluate ƒ at
these points. We show how to do this shortly.

3. Look through the lists for the maximum and minimum values of ƒ. These will be the
absolute maximum and minimum values of ƒ on R. Since absolute maxima and min-
ima are also local maxima and minima, the absolute maximum and minimum values
of ƒ appear somewhere in the lists made in Steps 1 and 2.

EXAMPLE 5 Finding Absolute Extrema

Find the absolute maximum and minimum values of

on the triangular region in the first quadrant bounded by the lines 

Solution Since ƒ is differentiable, the only places where ƒ can assume these values are
points inside the triangle (Figure 14.44) where and points on the boundary.

(a) Interior points. For these we have

yielding the single point The value of ƒ there is

ƒs1, 1d = 4.

sx, yd = s1, 1d.

fx = 2 - 2x = 0, fy = 2 - 2y = 0,

ƒx = ƒy = 0

y = 9 - x .
x = 0, y = 0,

ƒsx, yd = 2 + 2x + 2y - x2
- y2

ƒsx, yd = xy

ƒxx ƒyy - ƒxy
2

= -1,

ƒxx = 0, ƒyy = 0, ƒxy = 1.

ƒx = y = 0 and ƒy = x = 0.

ƒsx, yd = xy.
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z y

x

z � xy

FIGURE 14.43 The surface has a
saddle point at the origin (Example 4).

z = xy

y

x
O

(1, 1)

x � 0

B(0, 9)

y � 9 � x

A(9, 0)y � 0







9
2

9
2

,

FIGURE 14.44 This triangular region is
the domain of the function in Example 5.
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(b) Boundary points. We take the triangle one side at a time:

(i) On the segment OA, The function

may now be regarded as a function of x defined on the closed interval Its
extreme values (we know from Chapter 4) may occur at the endpoints

and at the interior points where The only interior point where
is where

(ii) On the segment OB, and

We know from the symmetry of ƒ in x and y and from the analysis we just carried out
that the candidates on this segment are

(iii) We have already accounted for the values of ƒ at the endpoints of AB, so we need only
look at the interior points of AB. With we have

Setting gives

At this value of x,

Summary We list all the candidates: The maximum is 4, which ƒ
assumes at (1, 1). The minimum is which ƒ assumes at (0, 9) and (9, 0).

Solving extreme value problems with algebraic constraints on the variables usually re-
quires the method of Lagrange multipliers in the next section. But sometimes we can solve
such problems directly, as in the next example.

EXAMPLE 6 Solving a Volume Problem with a Constraint

A delivery company accepts only rectangular boxes the sum of whose length and girth
(perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an accept-
able box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box,
respectively. Then the girth is We want to maximize the volume of theV = xyz2y + 2z.

-61,
4, 2, -61, 3, -s41>2d.

y = 9 -

9
2

=

9
2
 and ƒsx, yd = ƒ a9

2
, 

9
2
b = -

41
2

.

x =

18
4

=

9
2

.

ƒ¿sx, 9 - xd = 18 - 4x = 0

ƒsx, yd = 2 + 2x + 2s9 - xd - x2
- s9 - xd2

= -61 + 18x - 2x2.

y = 9 - x,

ƒs0, 0d = 2, ƒs0, 9d = -61, ƒs0, 1d = 3.

ƒsx, yd = ƒs0, yd = 2 + 2y - y2.

x = 0

ƒsx, 0d = ƒs1, 0d = 3.

x = 1,ƒ¿sx, 0d = 0
ƒ¿sx, 0d = 2 - 2x = 0.

 x = 9 where ƒs9, 0d = 2 + 18 - 81 =  -61

 x = 0 where ƒs0, 0d = 2

0 … x … 9.

ƒsx, yd = ƒsx, 0d = 2 + 2x - x2

y = 0.
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box (Figure 14.45) satisfying (the largest box accepted by the deliv-
ery company). Thus, we can write the volume of the box as a function of two variables.

Setting the first partial derivatives equal to zero,

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0),
(0, 54), (54, 0), which are not maximum values. At the point (18, 18), we apply the Second
Derivative Test (Theorem 11):

Then

Thus,

and

imply that (18, 18) gives a maximum volume. The dimensions of the package are
and The maximum volume is

or 

Despite the power of Theorem 10, we urge you to remember its limitations. It does not ap-
ply to boundary points of a function’s domain, where it is possible for a function to have
extreme values along with nonzero derivatives. Also, it does not apply to points where ei-
ther or fails to exist.ƒyƒx

6.75 ft3.V = s36ds18ds18d = 11,664 in.3 ,
z = 18 in.x = 108 - 2s18d - 2s18d = 36 in., y = 18 in.,

CVyy Vzz - V yz
2 D s18,18d = 16s18ds18d - 16s -9d2

7 0

Vyys18, 18d = -4s18d 6 0

Vyy Vzz - V yz
2

= 16yz - 16s27 - y - zd2.

Vyy = -4z, Vzz = -4y, Vyz = 108 - 4y - 4z.

 Vzs y, zd = 108y - 2y2
- 4yz = s108 - 2y - 4zdy = 0,

 Vys y, zd = 108z - 4yz - 2z2
= s108 - 4y - 2zdz = 0

 = 108yz - 2y2z - 2yz2

 Vs y, zd = s108 - 2y - 2zdyz

x + 2y + 2z = 108
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x y

z

Girth � distance
around here

FIGURE 14.45 The box in Example 6.

and
x = 108 - 2y - 2z
V = xyz

Summary of Max-Min Tests
The extreme values of ƒ(x, y) can occur only at

i. boundary points of the domain of ƒ

ii. critical points (interior points where or points where or 
fail to exist).

If the first- and second-order partial derivatives of ƒ are continuous throughout a
disk centered at a point (a, b) and the nature of ƒ(a, b)
can be tested with the Second Derivative Test:

i. and at 

ii. and at 

iii. at 

iv. at sa, bd  Q   test is inconclusive.ƒxx ƒyy - ƒxy
2

= 0

sa, bd  Q   saddle pointƒxx ƒyy - ƒxy
2

6 0

sa, bd  Q   local minimumƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

sa, bd  Q   local maximumƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0,

ƒyƒxƒx = ƒy = 0
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