Extreme Values and Saddle Points

14.7

has a maximum value of 1 and a minimum value of about -0.067 on the square region $|x| \le 3\pi/2, |y| \le 3\pi/2$. Continuous functions of two variables assume extreme values on closed, bounded domains (see Figures 14.36 and 14.37). We see in this section that we can narrow the search for these extreme values by examining the functions' first partial derivatives. A function of two variables can assume extreme values only at domain boundary points or at interior domain points where both first partial derivatives are zero or where one or both of the first partial derivatives fails to exist. However, the vanishing of derivatives at an interior point (a, b) does not always signal the presence of an extreme value. The surface that is the graph of the function might be shaped like a saddle right above (a, b) and cross its tangent plane there.

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points where the graph has a horizontal tangent line. At such points, we then look for local maxima, local minima, and points of inflection. For a function f(x, y) of two variables, we look for points where the surface z = f(x, y) has a horizontal tangent *plane*. At such points, we then look for local maxima, local minima, and saddle points (more about saddle points in a moment).

$$z = \frac{1}{2} \left(\left| |x| - |y| \right| - |x| - |y| \right)$$

viewed from the point (10, 15, 20). The defining function has a maximum value of 0 and a minimum value of -a on the square region $|x| \le a$, $|y| \le a$.

DEFINITIONS Local Maximum, Local Minimum

Let f(x, y) be defined on a region *R* containing the point (a, b). Then

- 1. f(a, b) is a **local maximum** value of f if $f(a, b) \ge f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).
- 2. f(a, b) is a local minimum value of f if $f(a, b) \le f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).

Local maxima correspond to mountain peaks on the surface z = f(x, y) and local minima correspond to valley bottoms (Figure 14.38). At such points the tangent planes, when they exist, are horizontal. Local extrema are also called **relative extrema**.

As with functions of a single variable, the key to identifying the local extrema is a first derivative test.

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson (1781–1840)

FIGURE 14.39 If a local maximum of *f* occurs at x = a, y = b, then the first partial derivatives $f_x(a, b)$ and $f_y(a, b)$ are both zero.

or

FIGURE 14.38 A local maximum is a mountain peak and a local minimum is a valley low.

THEOREM 10 First Derivative Test for Local Extreme Values

If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Proof If *f* has a local extremum at (a, b), then the function g(x) = f(x, b) has a local extremum at x = a (Figure 14.39). Therefore, g'(a) = 0 (Chapter 4, Theorem 2). Now $g'(a) = f_x(a, b)$, so $f_x(a, b) = 0$. A similar argument with the function h(y) = f(a, y) shows that $f_y(a, b) = 0$.

If we substitute the values $f_x(a, b) = 0$ and $f_y(a, b) = 0$ into the equation

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0$$

for the tangent plane to the surface z = f(x, y) at (a, b), the equation reduces to

$$0 \cdot (x - a) + 0 \cdot (y - b) - z + f(a, b) = 0$$

$$z = f(a, b).$$

FIGURE 14.40 Saddle points at the origin.

FIGURE 14.41 The graph of the function $f(x, y) = x^2 + y^2$ is the paraboloid $z = x^2 + y^2$. The function has a local minimum value of 0 at the origin (Example 1).

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a local extremum, provided there is a tangent plane there.

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f_x and f_y are zero or where one or both of f_x and f_y do not exist is a **critical point** of f.

Theorem 10 says that the only points where a function f(x, y) can assume extreme values are critical points and boundary points. As with differentiable functions of a single variable, not every critical point gives rise to a local extremum. A differentiable function of a single variable might have a point of inflection. A differentiable function of two variables might have a *saddle point*.

DEFINITION Saddle Point

A differentiable function f(x, y) has a **saddle point** at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where f(x, y) > f(a, b) and domain points (x, y) where f(x, y) < f(a, b). The corresponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of the surface (Figure 14.40).

EXAMPLE 1 Finding Local Extreme Values

Find the local extreme values of $f(x, y) = x^2 + y^2$.

Solution The domain of *f* is the entire plane (so there are no boundary points) and the partial derivatives $f_x = 2x$ and $f_y = 2y$ exist everywhere. Therefore, local extreme values can occur only where

$$f_x = 2x = 0$$
 and $f_y = 2y = 0$.

The only possibility is the origin, where the value of f is zero. Since f is never negative, we see that the origin gives a local minimum (Figure 14.41).

EXAMPLE 2 Identifying a Saddle Point

Find the local extreme values (if any) of $f(x, y) = y^2 - x^2$.

Solution The domain of *f* is the entire plane (so there are no boundary points) and the partial derivatives $f_x = -2x$ and $f_y = 2y$ exist everywhere. Therefore, local extrema can occur only at the origin (0, 0). Along the positive *x*-axis, however, *f* has the value $f(x, 0) = -x^2 < 0$; along the positive *y*-axis, *f* has the value $f(0, y) = y^2 > 0$. Therefore, every open disk in the *xy*-plane centered at (0, 0) contains points where the function is positive and points where it is negative. The function has a saddle point at the origin (Figure 14.42) instead of a local extreme value. We conclude that the function has no local extreme values.

That $f_x = f_y = 0$ at an interior point (a, b) of *R* does not guarantee *f* has a local extreme value there. If *f* and its first and second partial derivatives are continuous on *R*, however, we may be able to learn more from the following theorem, proved in Section 14.10.

FIGURE 14.42 The origin is a saddle point of the function $f(x, y) = y^2 - x^2$. There are no local extreme values (Example 2).

THEOREM 11 Second Derivative Test for Local Extreme Values

Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then

- i. f has a local maximum at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- ii. f has a local minimum at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- iii. f has a saddle point at (a, b) if $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b).
- iv. The test is inconclusive at (a, b) if $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b).

The expression $f_{xx}f_{yy} - f_{xy}^2$ is called the **discriminant** or **Hessian** of f. It is sometimes easier to remember it in determinant form,

$$f_{xx}f_{yy} - f_{xy}^{2} = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface curves the same way in all directions: downward if $f_{xx} < 0$, giving rise to a local maximum, and upward if $f_{xx} > 0$, giving a local minimum. On the other hand, if the discriminant is negative at (a, b), then the surface curves up in some directions and down in others, so we have a saddle point.

EXAMPLE 3 Finding Local Extreme Values

Find the local extreme values of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4.$$

Solution The function is defined and differentiable for all x and y and its domain has no boundary points. The function therefore has extreme values only at the points where f_x and f_y are simultaneously zero. This leads to

$$f_x = y - 2x - 2 = 0,$$
 $f_y = x - 2y - 2 = 0,$

or

$$x = y = -2$$

Therefore, the point (-2, -2) is the only point where f may take on an extreme value. To see if it does so, we calculate

$$f_{xx} = -2, \qquad f_{yy} = -2, \qquad f_{xy} = 1.$$

The discriminant of f at (a, b) = (-2, -2) is

$$f_{xx}f_{yy} - f_{xy}^2 = (-2)(-2) - (1)^2 = 4 - 1 = 3.$$

The combination

$$f_{xx} < 0$$
 and $f_{xx}f_{yy} - f_{xy}^2 > 0$

tells us that f has a local maximum at (-2, -2). The value of f at this point is f(-2, -2) = 8.

FIGURE 14.43 The surface z = xy has a saddle point at the origin (Example 4).

EXAMPLE 4 Searching for Local Extreme Values

Find the local extreme values of f(x, y) = xy.

Solution Since f is differentiable everywhere (Figure 14.43), it can assume extreme values only where

$$f_x = y = 0 \qquad \text{and} \qquad f_y = x = 0.$$

Thus, the origin is the only point where f might have an extreme value. To see what happens there, we calculate

$$f_{xx} = 0, \qquad f_{yy} = 0, \qquad f_{xy} = 1.$$

The discriminant,

$$f_{xx}f_{yy} - f_{xy}^{2} = -1$$

is negative. Therefore, the function has a saddle point at (0, 0). We conclude that f(x, y) = xy has no local extreme values.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function f(x, y) on a closed and bounded region *R* into three steps.

- 1. List the interior points of R where f may have local maxima and minima and evaluate f at these points. These are the critical points of f.
- 2. *List the boundary points of R* where *f* has local maxima and minima and evaluate *f* at these points. We show how to do this shortly.
- 3. Look through the lists for the maximum and minimum values of f. These will be the absolute maximum and minimum values of f on R. Since absolute maxima and minima are also local maxima and minima, the absolute maximum and minimum values of f appear somewhere in the lists made in Steps 1 and 2.

EXAMPLE 5 Finding Absolute Extrema

Find the absolute maximum and minimum values of

$$f(x, y) = 2 + 2x + 2y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x.

Solution Since *f* is differentiable, the only places where *f* can assume these values are points inside the triangle (Figure 14.44) where $f_x = f_y = 0$ and points on the boundary.

(a) Interior points. For these we have

$$f_x = 2 - 2x = 0, \qquad f_y = 2 - 2y = 0,$$

yielding the single point (x, y) = (1, 1). The value of f there is

$$f(1,1) = 4$$

FIGURE 14.44 This triangular region is the domain of the function in Example 5.

- (b) Boundary points. We take the triangle one side at a time:
- (i) On the segment OA, y = 0. The function

$$f(x, y) = f(x, 0) = 2 + 2x - x^2$$

may now be regarded as a function of x defined on the closed interval $0 \le x \le 9$. Its extreme values (we know from Chapter 4) may occur at the endpoints

x = 0 where f(0, 0) = 2x = 9 where f(9, 0) = 2 + 18 - 81 = -61

and at the interior points where f'(x, 0) = 2 - 2x = 0. The only interior point where f'(x, 0) = 0 is x = 1, where

$$f(x, 0) = f(1, 0) = 3.$$

(ii) On the segment OB, x = 0 and

$$f(x, y) = f(0, y) = 2 + 2y - y^2.$$

We know from the symmetry of f in x and y and from the analysis we just carried out that the candidates on this segment are

$$f(0, 0) = 2,$$
 $f(0, 9) = -61,$ $f(0, 1) = 3.$

(iii) We have already accounted for the values of f at the endpoints of AB, so we need only look at the interior points of AB. With y = 9 - x, we have

$$f(x, y) = 2 + 2x + 2(9 - x) - x^{2} - (9 - x)^{2} = -61 + 18x - 2x^{2}$$

Setting f'(x, 9 - x) = 18 - 4x = 0 gives

$$x = \frac{18}{4} = \frac{9}{2}$$

At this value of *x*,

$$y = 9 - \frac{9}{2} = \frac{9}{2}$$
 and $f(x, y) = f\left(\frac{9}{2}, \frac{9}{2}\right) = -\frac{41}{2}$

Summary We list all the candidates: 4, 2, -61, 3, -(41/2). The maximum is 4, which f assumes at (1, 1). The minimum is -61, which f assumes at (0, 9) and (9, 0).

Solving extreme value problems with algebraic constraints on the variables usually requires the method of Lagrange multipliers in the next section. But sometimes we can solve such problems directly, as in the next example.

EXAMPLE 6 Solving a Volume Problem with a Constraint

A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an acceptable box of largest volume.

Solution Let *x*, *y*, and *z* represent the length, width, and height of the rectangular box, respectively. Then the girth is 2y + 2z. We want to maximize the volume V = xyz of the

FIGURE 14.45 The box in Example 6.

0

box (Figure 14.45) satisfying x + 2y + 2z = 108 (the largest box accepted by the delivery company). Thus, we can write the volume of the box as a function of two variables.

$$V(y, z) = (108 - 2y - 2z)yz$$

$$V = xyz \text{ and}$$

$$x = 108 - 2y - 2z$$

$$V = xyz \text{ and}$$

$$x = 108 - 2y - 2z$$

Setting the first partial derivatives equal to zero,

$$V_y(y, z) = 108z - 4yz - 2z^2 = (108 - 4y - 2z)z = 0$$

$$V_z(y, z) = 108y - 2y^2 - 4yz = (108 - 2y - 4z)y = 0,$$

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0), (0, 54), (54, 0), which are not maximum values. At the point (18, 18), we apply the Second Derivative Test (Theorem 11):

$$V_{yy} = -4z, \qquad V_{zz} = -4y, \qquad V_{yz} = 108 - 4y - 4z$$

Then

$$V_{yy}V_{zz} - V_{yz}^{2} = 16yz - 16(27 - y - z)^{2}$$

Thus,

and

$$\left[V_{yy}V_{zz} - V_{yz}^{2}\right]_{(18,18)} = 16(18)(18) - 16(-9)^{2} >$$

 $V_{vv}(18, 18) = -4(18) < 0$

imply that (18, 18) gives a maximum volume. The dimensions of the package are x = 108 - 2(18) - 2(18) = 36 in., y = 18 in., and z = 18 in. The maximum volume is V = (36)(18)(18) = 11,664 in.³, or 6.75 ft³.

Despite the power of Theorem 10, we urge you to remember its limitations. It does not apply to boundary points of a function's domain, where it is possible for a function to have extreme values along with nonzero derivatives. Also, it does not apply to points where either f_x or f_y fails to exist.

Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

- i. **boundary points** of the domain of f
- ii. critical points (interior points where $f_x = f_y = 0$ or points where f_x or f_y fail to exist).

If the first- and second-order partial derivatives of *f* are continuous throughout a disk centered at a point (a, b) and $f_x(a, b) = f_y(a, b) = 0$, the nature of f(a, b) can be tested with the **Second Derivative Test**:

- i. $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at $(a, b) \implies$ local maximum
- ii. $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at $(a, b) \Rightarrow$ local minimum
- iii. $f_{xx}f_{yy} f_{xy}^2 < 0$ at $(a, b) \Rightarrow$ saddle point
- iv. $f_{xx}f_{yy} f_{xy}^2 = 0$ at $(a, b) \implies$ test is inconclusive.