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EXERCISES 14.7

Finding Local Extrema
Find all the local maxima, local minima, and saddle points of the
functions in Exercises 1–30.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27. 28.

29. 30.

Finding Absolute Extrema
In Exercises 31–38, find the absolute maxima and minima of the func-
tions on the given domains.

31. on the closed triangular
plate bounded by the lines in the first
quadrant

32. on the closed triangular plate in the
first quadrant bounded by the lines x = 0, y = 4, y = x
Dsx, yd = x2

- xy + y2
+ 1

x = 0, y = 2, y = 2x
ƒsx, yd = 2x2

- 4x + y2
- 4y + 1

ƒsx, yd = e2x cos yƒsx, yd = y sin x

ƒsx, yd =

1
x + xy +

1
yƒsx, yd =

1
x2

+ y2
- 1

ƒsx, yd = x4
+ y4

+ 4xy

ƒsx, yd = 4xy - x4
- y4

ƒsx, yd = 2x3
+ 2y3

- 9x2
+ 3y2

- 12y

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

- 8

ƒsx, yd = 8x3
+ y3

+ 6xy

ƒsx, yd = 9x3
+ y3>3 - 4xy

ƒsx, yd = 3y2
- 2y3

- 3x2
+ 6xy

ƒsx, yd = 6x2
- 2x3

+ 3y2
+ 6xy

ƒsx, yd = x3
+ 3xy + y3

ƒsx, yd = x3
- y3

- 2xy + 6

ƒsx, yd = 3 + 2x + 2y - 2x2
- 2xy - y2

ƒsx, yd = x2
+ 2xy

ƒsx, yd = x2
- 2xy + 2y2

- 2x + 2y + 1

ƒsx, yd = x2
- y2

- 2x + 4y + 6

ƒsx, yd = 4x2
- 6xy + 5y2

- 20x + 26y

ƒsx, yd = 2x2
+ 3xy + 4y2

- 5x + 2y

ƒsx, yd = 3x2
+ 6xy + 7y2

- 2x + 4y

ƒsx, yd = x2
- 4xy + y2

+ 6y + 2

ƒsx, yd = 2xy - x2
- 2y2

+ 3x + 4

ƒsx, yd = 5xy - 7x2
+ 3x - 6y + 2

ƒsx, yd = y2
+ xy - 2x - 2y + 2

ƒsx, yd = x2
+ xy + 3x + 2y + 5

ƒsx, yd = 2xy - 5x2
- 2y2

+ 4x - 4

ƒsx, yd = 2xy - 5x2
- 2y2

+ 4x + 4y - 4

ƒsx, yd = x2
+ 3xy + 3y2

- 6x + 3y - 6

ƒsx, yd = x2
+ xy + y2

+ 3x - 3y + 4

33. on the closed triangular plate bounded by the
lines in the first quadrant

34. on the rectangular plate

35. on the rectangular plate

36. on the rectangular plate 

37. on the rectangular plate 
(see accompanying figure).

38. on the triangular plate bounded by
the lines in the first quadrant

39. Find two numbers a and b with such that

has its largest value.

40. Find two numbers a and b with such that

has its largest value.

41. Temperatures The flat circular plate in Figure 14.46 has the
shape of the region The plate, including the
boundary where is heated so that the temperature
at the point (x, y) is

Find the temperatures at the hottest and coldest points on the
plate.

Tsx, yd = x2
+ 2y2

- x.

x2
+ y2

= 1 ,
x2

+ y2
… 1.

L
b

a
s24 - 2x - x2d1>3 dx

a … b

L
b

a
s6 - x - x2d dx

a … b

x = 0, y = 0, x + y = 1
ƒsx, yd = 4x - 8xy + 2y + 1

z

y
x

z � (4x � x2) cos y

-p>4 … y … p>4 1 … x … 3, ƒsx, yd = s4x - x2d cos y

1, 0 … y … 10 … x …

ƒsx, yd = 48xy - 32x3
- 24y2

0 … x … 5, -3 … y … 0
Tsx, yd = x2

+ xy + y2
- 6x + 2

0 … x … 5, -3 … y … 3
Tsx, yd = x2

+ xy + y2
- 6x

x = 0, y = 0, y + 2x = 2
ƒsx, yd = x2

+ y2
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42. Find the critical point of

in the open first quadrant and show that ƒ takes
on a minimum there (Figure 14.47).

sx 7 0, y 7 0d

ƒsx, yd = xy + 2x - ln x2y

Theory and Examples
43. Find the maxima, minima, and saddle points of ƒ(x, y), if any,

given that

a.

b.

c.

Describe your reasoning in each case.

44. The discriminant is zero at the origin for each of the
following functions, so the Second Derivative Test fails there. De-
termine whether the function has a maximum, a minimum, or nei-
ther at the origin by imagining what the surface looks
like. Describe your reasoning in each case.

a. b.

c. d.

e. f.

45. Show that (0, 0) is a critical point of no
matter what value the constant k has. (Hint: Consider two cases:

and )

46. For what values of the constant k does the Second Derivative Test
guarantee that will have a saddle point
at (0, 0)? A local minimum at (0, 0)? For what values of k is the
Second Derivative Test inconclusive? Give reasons for your
answers.

47. If must ƒ have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

48. Can you conclude anything about ƒ(a, b) if ƒ and its first and sec-
ond partial derivatives are continuous throughout a disk centered
at (a, b) and and differ in sign? Give reasons for
your answer.

49. Among all the points on the graph of that lie
above the plane find the point farthest from
the plane.

50. Find the point on the graph of nearest the
plane 

51. The function fails to have an absolute maximum
value in the closed first quadrant and Does this
contradict the discussion on finding absolute extrema given in the
text? Give reasons for your answer.

52. Consider the function 
over the square and 

a. Show that ƒ has an absolute minimum along the line segment
in this square. What is the absolute minimum

value?

b. Find the absolute maximum value of ƒ over the square.

Extreme Values on Parametrized Curves
To find the extreme values of a function ƒ(x, y) on a curve

we treat ƒ as a function of the single variable t andx = xstd, y = ystd,

2x + 2y = 1

0 … y … 1.0 … x … 1
ƒsx, yd = x2

+ y2
+ 2xy - x - y + 1

y Ú 0.x Ú 0
ƒsx, yd = x + y

x + 2y - z = 0.
z = x2

+ y2
+ 10

x + 2y + 3z = 0,
z = 10 - x2

- y2

ƒyysa, bdƒxxsa, bd

ƒxsa, bd = ƒysa, bd = 0,

ƒsx, yd = x2
+ kxy + y2

k Z 0.k = 0

ƒsx, yd = x2
+ kxy + y2

ƒsx, yd = x4y4ƒsx, yd = x3y3

ƒsx, yd = x3y2ƒsx, yd = xy2

ƒsx, yd = 1 - x2y2ƒsx, yd = x2y2

z = ƒsx, yd

ƒxx ƒyy - ƒxy
2

ƒx = 9x2
- 9 and ƒy = 2y + 4

ƒx = 2x - 2 and ƒy = 2y - 4

ƒx = 2x - 4y and ƒy = 2y - 4x
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y

x
0

FIGURE 14.46 Curves of
constant temperature are 
called isotherms. The figure
shows isotherms of the
temperature function

on the
disk in the xy-
plane. Exercise 41 asks you to
locate the extreme
temperatures.

x2
+ y2

… 1
Tsx, yd = x2

+ 2y2
- x

y

0
x

FIGURE 14.47 The function

(selected level curves shown
here) takes on a minimum
value somewhere in the open
first quadrant 
(Exercise 42).

x 7 0, y 7 0

ƒsx, yd = xy + 2x - ln x2y
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EXAMPLE Find the least squares line for the points (0, 1),
(1, 3), (2, 2), (3, 4), (4, 5).

Solution We organize the calculations in a table:

k

1 0 1 0 0
2 1 3 1 3
3 2 2 4 4
4 3 4 9 12
5 4 5 16 20

10 15 30 39

Then we find

and use the value of m to find

The least squares line is (Figure 14.49). y = 0.9x + 1.2

b =

1
5

 A15 - A0.9 B A10 B B = 1.2 .

m =

s10ds15d - 5s39d
s10d2

- 5s30d
= 0.9

g

xk ykxk
2ykxk

use the Chain Rule to find where dƒ dt is zero. As in any other single-
variable case, the extreme values of ƒ are then found among the values
at the

a. critical points (points where dƒ dt is zero or fails to exist), and

b. endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following
functions on the given curves.

53. Functions:

a. b.

c.

Curves:

i. The semicircle 

ii. The quarter circle 

Use the parametric equations 

54. Functions:

a. b.

c.

Curves:

i. The semi-ellipse 

ii. The quarter ellipse 

Use the parametric equations 

55. Function: 

Curves:

i. The line 

ii. The line segment 

iii. The line segment 

56. Functions:

a. b.

Curves:

i. The line 

ii. The line segment 

Least Squares and Regression Lines
When we try to fit a line to a set of numerical data points

(Figure 14.48), we usually choose the
line that minimizes the sum of the squares of the vertical distances
from the points to the line. In theory, this means finding the values of
m and b that minimize the value of the function

(1)

The values of m and b that do this are found with the First and Second
Derivative Tests to be

(2) m =

aa xkb aa ykb - na xk yk

aa xkb2

- na xk
2

 , 

w = smx1 + b - y1d2
+

Á
+ smxn + b - ynd2 .

sx1, y1d, sx2 , y2d, Á , sxn , ynd
y = mx + b

x = t, y = 2 - 2t, 0 … t … 1

x = t, y = 2 - 2t

gsx, yd = 1>sx2
+ y2dƒsx, yd = x2

+ y2

x = 2t, y = t + 1, 0 … t … 1

x = 2t, y = t + 1, -1 … t … 0

x = 2t, y = t + 1

ƒsx, yd = xy

x = 3 cos t, y = 2 sin t .

sx2>9d + s y2>4d = 1, x Ú 0, y Ú 0

sx2>9d + s y2>4d = 1, y Ú 0

hsx, yd = x2
+ 3y2

gsx, yd = xyƒsx, yd = 2x + 3y

x = 2 cos t, y = 2 sin t .

x2
+ y2

= 4, x Ú 0, y Ú 0

x2
+ y2

= 4, y Ú 0

hsx, yd = 2x2
+ y2

gsx, yd = xyƒsx, yd = x + y

>

>
(3)

with all sums running from to Many scientific calcula-
tors have these formulas built in, enabling you to find m and b with
only a few key strokes after you have entered the data.

The line determined by these values of m and b is
called the least squares line, regression line, or trend line for the
data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

y = mx + b

k = n .k = 1

 b =

1
n aa yk - ma xkb , 
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y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y � mx � b

FIGURE 14.48 To fit a line to
noncollinear points, we choose the line that
minimizes the sum of the squares of the
deviations.

Equation (2) with
and data

from the table
n = 5

Equation (3) with
n = 5, m = 0.9
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In Exercises 57–60, use Equations (2) and (3) to find the least squares
line for each set of data points. Then use the linear equation you obtain
to predict the value of y that would correspond to 

57. 58.

59. (0, 0), (1, 2), (2, 3) 60. (0, 1), (2, 2), (3, 2)

61. Write a linear equation for the effect of irrigation on the yield of
alfalfa by fitting a least squares line to the data in Table 14.1
(from the University of California Experimental Station, Bulletin
No. 450, p. 8). Plot the data and draw the line.

s -2, 0d, s0, 2d, s2, 3ds -1, 2d, s0, 1d, s3, -4d
x = 4.

63. Köchel numbers In 1862, the German musicologist Ludwig
von Köchel made a chronological list of the musical works of
Wolfgang Amadeus Mozart. This list is the source of the Köchel
numbers, or “K numbers,” that now accompany the titles of
Mozart’s pieces (Sinfonia Concertante in E-flat major, K.364, for
example). Table 14.3 gives the Köchel numbers and composition
dates (y) of ten of Mozart’s works.

a. Plot y vs. K to show that y is close to being a linear function of K.

b. Find a least squares line for the data and add
the line to your plot in part (a).

c. K.364 was composed in 1779. What date is predicted by the
least squares line?

y = mK + b

14.7 Extreme Values and Saddle Points 1037

x

y

0 1 2 3 4

1

2

3

4

5

P1(0, 1)

P3(2, 2)

P2(1, 3)

P4(3, 4)

P5(4, 5)

y � 0.9x � 1.2

FIGURE 14.49 The least
squares line for the data in the
example.

TABLE 14.1 Growth of alfalfa

x y
(total seasonal depth (average alfalfa
of water applied, in.) yield, tons/acre)

12 5.27

18 5.68

24 6.25

30 7.21

36 8.20

42 8.71

TABLE 14.2 Crater sizes on Mars

(for
Diameter in left value of
km, D class interval) Frequency, F

32–45 0.001 51

45–64 0.0005 22

64–90 0.00024 14

90–128 0.000123 4

1>D2

T

T

TABLE 14.3 Compositions by Mozart

Köchel number, Year composed,
K y

1 1761

75 1771

155 1772

219 1775

271 1777

351 1780

425 1783

503 1786

575 1789

626 1791

T

T

62. Craters of Mars One theory of crater formation suggests that
the frequency of large craters should fall off as the square of the
diameter (Marcus, Science, June 21, 1968, p. 1334). Pictures from
Mariner IV show the frequencies listed in Table 14.2. Fit a line of
the form to the data. Plot the data and draw
the line.

F = ms1>D2d + b

64. Submarine sinkings The data in Table 14.4 show the results of
a historical study of German submarines sunk by the U.S. Navy
during 16 consecutive months of World War II. The data given for
each month are the number of reported sinkings and the number
of actual sinkings. The number of submarines sunk was slightly
greater than the Navy’s reports implied. Find a least squares line
for estimating the number of actual sinkings from the number of
reported sinkings.
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COMPUTER EXPLORATIONS

Exploring Local Extrema at Critical Points
In Exercises 65–70, you will explore functions to identify their local
extrema. Use a CAS to perform the following steps:

a. Plot the function over the given rectangle.

b. Plot some level curves in the rectangle.

c. Calculate the function’s first partial derivatives and use the CAS
equation solver to find the critical points. How do the critical
points relate to the level curves plotted in part (b)? Which critical
points, if any, appear to give a saddle point? Give reasons for
your answer.

d. Calculate the function’s second partial derivatives and find the
discriminant 

e. Using the max-min tests, classify the critical points found in part
(c). Are your findings consistent with your discussion in part (c)?

65.

66.

67.

68.

69.

70.

-2 … x … 2, -2 … y … 2

ƒsx, yd = e x5 ln sx2
+ y2d, sx, yd Z s0, 0d

0, sx, yd = s0, 0d 
,

-4 … x … 3, -2 … y … 2

ƒsx, yd = 5x6
+ 18x5

- 30x4
+ 30xy2

- 120x3,

-3>2 … y … 3>2
ƒsx, yd = 2x4

+ y4
- 2x2

- 2y2
+ 3, -3>2 … x … 3>2,

-6 … y … 6

ƒsx, yd = x4
+ y2

- 8x2
- 6y + 16, -3 … x … 3,

ƒsx, yd = x3
- 3xy2

+ y2, -2 … x … 2, -2 … y … 2

ƒsx, yd = x2
+ y3

- 3xy, -5 … x … 5, -5 … y … 5

ƒxx ƒyy - ƒxy
2.

1038 Chapter 14: Partial Derivatives

TABLE 14.4 Sinkings of German submarines by U.S.
during 16 consecutive months of WWII

Guesses by U.S.
(reported sinkings) Actual number

Month x y

1 3 3

2 2 2

3 4 6

4 2 3

5 5 4

6 5 3

7 9 11

8 12 9

9 8 10

10 13 16

11 14 13

12 3 5

13 4 6

14 13 19

15 10 15

16 16 15

123 140
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