
1038 Chapter 14: Partial Derivatives

Lagrange Multipliers

Sometimes we need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane—a disk, for example, a closed triangular
region, or along a curve. In this section, we explore a powerful method for finding extreme
values of constrained functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

EXAMPLE 1 Finding a Minimum with Constraint

Find the point P(x, y, z) closest to the origin on the plane 

Solution The problem asks us to find the minimum value of the function

 = 2x2
+ y2

+ z2

 ƒ OP
1

ƒ = 2sx - 0d2
+ s y - 0d2

+ sz - 0d2

2x + y - z - 5 = 0.

14.8
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subject to the constraint that

Since has a minimum value wherever the function

has a minimum value, we may solve the problem by finding the minimum value of ƒ(x, y, z)
subject to the constraint (thus avoiding square roots). If we regard x
and y as the independent variables in this equation and write z as

our problem reduces to one of finding the points (x, y) at which the function

has its minimum value or values. Since the domain of h is the entire xy-plane, the First
Derivative Test of Section 14.7 tells us that any minima that h might have must occur at
points where

This leads to

and the solution

We may apply a geometric argument together with the Second Derivative Test to show that
these values minimize h. The z-coordinate of the corresponding point on the plane

is

Therefore, the point we seek is

The distance from P to the origin is  

Attempts to solve a constrained maximum or minimum problem by substitution, as
we might call the method of Example 1, do not always go smoothly. This is one of the rea-
sons for learning the new method of this section.

EXAMPLE 2 Finding a Minimum with Constraint

Find the points closest to the origin on the hyperbolic cylinder 

Solution 1 The cylinder is shown in Figure 14.50. We seek the points on the cylinder
closest to the origin. These are the points whose coordinates minimize the value of the
function

Square of the distanceƒsx, y, zd = x2
+ y2

+ z2

x2
- z2

- 1 = 0.

5>26 L 2.04.

Closest point: P a5
3

, 
5
6

, -
5
6
b.

z = 2 a5
3
b +

5
6

- 5 =  -
5
6

.

z = 2x + y - 5

x =

5
3

, y =

5
6

.

10x + 4y = 20, 4x + 4y = 10,

hx = 2x + 2s2x + y - 5ds2d = 0, hy = 2y + 2s2x + y - 5d = 0.

hsx, yd = ƒsx, y, 2x + y - 5d = x2
+ y2

+ s2x + y - 5d2

z = 2x + y - 5,

2x + y - z - 5 = 0

ƒsx, y, zd = x2
+ y2

+ z2

ƒ OP
1

ƒ

2x + y - z - 5 = 0.
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(1, 0, 0)

z

y

x

x2 � z2 � 1

(–1, 0, 0)

FIGURE 14.50 The hyperbolic cylinder
in Example 2.x2

- z2
- 1 = 0
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subject to the constraint that If we regard x and y as independent vari-
ables in the constraint equation, then

and the values of on the cylinder are given by the function

To find the points on the cylinder whose coordinates minimize ƒ, we look for the points in
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are
zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point in
the domain of h where h has a minimum value. We, on the other hand, want the points on
the cylinder where h has a minimum value. Although the domain of h is the entire xy-
plane, the domain from which we can select the first two coordinates of the points (x, y, z)
on the cylinder is restricted to the “shadow” of the cylinder on the xy-plane; it does not in-
clude the band between the lines and (Figure 14.51).

We can avoid this problem if we treat y and z as independent variables (instead of x
and y) and express x in terms of y and z as

With this substitution, becomes

and we look for the points where k takes on its smallest value. The domain of k in the yz-
plane now matches the domain from which we select the y- and z-coordinates of the points
(x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corre-
sponding points on the cylinder. The smallest values of k occur where

or where This leads to

The corresponding points on the cylinder are We can see from the inequality

that the points give a minimum value for k. We can also see that the minimum
distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to
imagine a small sphere centered at the origin expanding like a soap bubble until it just
touches the cylinder (Figure 14.52). At each point of contact, the cylinder and sphere have
the same tangent plane and normal line. Therefore, if the sphere and cylinder are repre-
sented as the level surfaces obtained by setting

ƒsx, y, zd = x2
+ y2

+ z2
- a2 and gsx, y, zd = x2

- z2
- 1

s ;1, 0, 0d

ks y, zd = 1 + y2
+ 2z2

Ú 1

s ;1, 0, 0d.

x2
= z2

+ 1 = 1, x = ;1.

y = z = 0.

ky = 2y = 0 and kz = 4z = 0,

ks y, zd = sz2
+ 1d + y2

+ z2
= 1 + y2

+ 2z2

ƒsx, y, zd = x2
+ y2

+ z2

x2
= z2

+ 1.

x = 1x = -1

hx = 4x = 0 and hy = 2y = 0,

hsx, yd = x2
+ y2

+ sx2
- 1d = 2x2

+ y2
- 1.

ƒsx, y, zd = x2
+ y2

+ z2

z2
= x2

- 1

x2
- z2

- 1 = 0 .
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On this part, On this part,

x � �z2 � 1

x

z

–11

y
x � –1x � 1

The hyperbolic cylinder x2 � z2 � 1

x � –�z2 � 1

FIGURE 14.51 The region in the xy-
plane from which the first two coordinates
of the points (x, y, z) on the hyperbolic
cylinder are selected
excludes the band in the
xy-plane (Example 2).

-1 6 x 6 1
x2

- z2
= 1
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equal to 0, then the gradients and will be parallel where the surfaces touch. At any
point of contact, we should therefore be able to find a scalar (“lambda”) such that

or

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three
scalar equations

For what values of will a point (x, y, z) whose coordinates satisfy these scalar equa-
tions also lie on the surface To answer this question, we use our knowl-
edge that no point on the surface has a zero x-coordinate to conclude that Hence,

only if

For the equation becomes If this equation is to be satisfied
as well, z must be zero. Since also (from the equation ), we conclude that the
points we seek all have coordinates of the form

What points on the surface have coordinates of this form? The answer is the
points (x, 0, 0) for which

The points on the cylinder closest to the origin are the points  s ;1, 0, 0d.

x2
- s0d2

= 1, x2
= 1, or x = ;1.

x2
- z2

= 1

sx, 0, 0d.

2y = 0y = 0
2z = -2z.2z = -2lzl = 1,

2 = 2l, or l = 1.

2x = 2lx
x Z 0.

x2
- z2

- 1 = 0?
l

2x = 2lx, 2y = 0, 2z = -2lz.

2xi + 2yj + 2zk = ls2xi - 2zkd.

§ƒ = l§g,

l

§g§ƒ
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z

y

x

x2 � y2 � z2 � a2 � 0

x2 � z2 � 1 � 0

FIGURE 14.52 A sphere expanding like a soap
bubble centered at the origin until it just touches
the hyperbolic cylinder 
(Example 2).

x2
- z2

- 1 = 0
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The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method
says that the extreme values of a function ƒ(x, y, z) whose variables are subject to a con-
straint are to be found on the surface at the points where

for some scalar (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following ob-

servation, which we state as a theorem.

l

§ƒ = l§g

g = 0gsx, y, zd = 0
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THEOREM 12 The Orthogonal Gradient Theorem
Suppose that ƒ(x, y, z) is differentiable in a region whose interior contains a
smooth curve

If is a point on C where ƒ has a local maximum or minimum relative to its val-
ues on C, then is orthogonal to C at P0 .§ƒ

P0

C: rstd = gstdi + hstdj + kstdk.

COROLLARY OF THEOREM 12
At the points on a smooth curve where a differentiable func-
tion ƒ(x, y) takes on its local maxima and minima relative to its values on the
curve, , where v = dr>dt.§ƒ # v = 0

rstd = gstdi + hstdj

Proof We show that is orthogonal to the curve’s velocity vector at The values of ƒ
on C are given by the composite ƒ(g(t), h(t), k(t)), whose derivative with respect to t is

At any point where ƒ has a local maximum or minimum relative to its values on the
curve, so

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two
variables.

§ƒ # v = 0.

dƒ>dt = 0,
P0

dƒ
dt

=

0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

+

0ƒ
0z  

dk
dt

= §ƒ # v.

P0 .§ƒ

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ƒ(x, y, z)
and g(x, y, z) are differentiable and that is a point on the surface where ƒ
has a local maximum or minimum value relative to its other values on the surface. Then ƒ
takes on a local maximum or minimum at relative to its values on every differentiable
curve through on the surface Therefore, is orthogonal to the velocity
vector of every such differentiable curve through So is moreover (because is
orthogonal to the level surface as we saw in Section 14.5). Therefore, at is
some scalar multiple of §g.l

P0, §ƒg = 0,
§g§g ,P0 .

§ƒgsx, y, zd = 0.P0

P0

gsx, y, zd = 0P0
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EXAMPLE 3 Using the Method of Lagrange Multipliers

Find the greatest and smallest values that the function

takes on the ellipse (Figure 14.53)

Solution We want the extreme values of subject to the constraint

To do so, we first find the values of x, y, and for which

The gradient equation in Equations (1) gives

from which we find

so that or We now consider these two cases.

Case 1: If then But (0, 0) is not on the ellipse. Hence, 
Case 2: If then and Substituting this in the equation

gives

The function therefore takes on its extreme values on the ellipse at the four
points The extreme values are and 

The Geometry of the Solution

The level curves of the function are the hyperbolas (Figure 14.54).
The farther the hyperbolas lie from the origin, the larger the absolute value of ƒ. We want

xy = cƒsx, yd = xy

xy = -2.xy = 2s ;2, 1d, s ;2, -1d.
ƒsx, yd = xy

s ;2yd2

8
+

y2

2
= 1, 4y2

+ 4y2
= 8 and y = ;1.

gsx, yd = 0
x = ;2y.l = ;2y Z 0,

y Z 0.x = y = 0.y = 0 ,

l = ;2.y = 0

y =

l
4

 x, x = ly, and y =

l
4

 slyd =

l2

4
 y,

yi + xj =

l
4

 xi + lyj,

§ƒ = l§g and gsx, yd = 0.

l

gsx, yd =

x2

8
+

y2

2
- 1 = 0.

ƒsx, yd = xy

x2

8
+

y2

2
= 1.

ƒsx, yd = xy
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The Method of Lagrange Multipliers
Suppose that ƒ(x, y, z) and g(x, y, z) are differentiable. To find the local maximum
and minimum values of ƒ subject to the constraint find the values
of x, y, z, and that simultaneously satisfy the equations

(1)

For functions of two independent variables, the condition is similar, but without
the variable z.

§ƒ = l§g and gsx, y, zd = 0.

l

gsx, y, zd = 0,

y

x
0 2�2

�2 �      � 1
x2

8
y2

2

FIGURE 14.53 Example 3 shows how to
find the largest and smallest values of the
product xy on this ellipse.
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to find the extreme values of ƒ(x, y), given that the point (x, y) also lies on the ellipse
Which hyperbolas intersecting the ellipse lie farthest from the origin? The

hyperbolas that just graze the ellipse, the ones that are tangent to it, are farthest. At these
points, any vector normal to the hyperbola is normal to the ellipse, so is a
multiple of At the point (2, 1), for example,

At the point 

EXAMPLE 4 Finding Extreme Function Values on a Circle

Find the maximum and minimum values of the function on the circle

Solution We model this as a Lagrange multiplier problem with

and look for the values of x, y, and that satisfy the equations

The gradient equation in Equations (1) implies that and gives

x =

3
2l

, y =
2
l

.

l Z 0

 gsx, yd = 0: x2
+ y2

- 1 = 0.

 §ƒ = l§g: 3i + 4j = 2xli + 2ylj

l

ƒsx, yd = 3x + 4y, gsx, yd = x2
+ y2

- 1

x2
+ y2

= 1.
ƒsx, yd = 3x + 4y

§ƒ = i - 2j, §g = -
1
2

 i + j, and §ƒ = -2§g.

s -2, 1d,

§ƒ = i + 2j, §g =
1
2

 i + j, and §ƒ = 2§g.

§g = sx>4di + yj.sl = ;2d
§ƒ = yi + xj

x2
+ 4y2

= 8.
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y

x
0 1

1

xy � –2
∇f � i � 2j

xy � 2

∇g �    i � j1
2

xy � –2xy � 2

�      � 1 � 0
2
y2

8
x2

FIGURE 14.54 When subjected to the
constraint 
the function takes on extreme
values at the four points These are
the points on the ellipse when (red) is a
scalar multiple of (blue) (Example 3).§g

§ƒ
s ;2, ;1d.

ƒsx, yd = xy
gsx, yd = x2>8 + y2>2 - 1 = 0,
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These equations tell us, among other things, that x and y have the same sign. With these
values for x and y, the equation gives

so

Thus,

and has extreme values at 
By calculating the value of at the points we see that its maxi-

mum and minimum values on the circle are

The Geometry of the Solution

The level curves of are the lines (Figure 14.55). The far-
ther the lines lie from the origin, the larger the absolute value of ƒ. We want to find the ex-
treme values of ƒ(x, y) given that the point (x, y) also lies on the circle 
Which lines intersecting the circle lie farthest from the origin? The lines tangent to the cir-
cle are farthest. At the points of tangency, any vector normal to the line is normal to the
circle, so the gradient is a multiple of the gradient

At the point (3 5, 4 5), for example,

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ƒ(x, y, z)
whose variables are subject to two constraints. If the constraints are

and and are differentiable, with not parallel to we find the constrained local
maxima and minima of ƒ by introducing two Lagrange multipliers and (mu, pronounced
“mew”). That is, we locate the points P(x, y, z) where ƒ takes on its constrained extreme val-
ues by finding the values of and that simultaneously satisfy the equationsmx, y, z, l,

ml

§g2,§g1g2g1

g1sx, y, zd = 0 and g2sx, y, zd = 0

§ƒ = 3i + 4j, §g =

6
5 i +

8
5 j, and §ƒ =

5
2

 §g.

>>§g = 2xi + 2yj.
sl = ;5>2d§ƒ = 3i + 4j

x2
+ y2

= 1 .

3x + 4y = cƒsx, yd = 3x + 4y

3 a35 b + 4 a45 b =

25
5 = 5 and 3 a- 3

5 b + 4 a- 4
5 b = -

25
5 = -5.

x2
+ y2

= 1
;s3>5, 4>5d,3x + 4y

sx, yd = ;s3>5, 4>5d.ƒsx, yd = 3x + 4y

x =

3
2l

= ;

3
5, y =

2
l

= ;
4
5 ,

9
4l2 +

4
l2 = 1, 9 + 16 = 4l2, 4l2

= 25, and l = ;

5
2

.

a 3
2l
b2

+ a2
l
b2

- 1 = 0,

gsx, yd = 0
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y

x

3x � 4y � 5

3x � 4y � –5

x2 � y2 � 1 





3
5

4
5

,

∇f � 3i � 4j �    ∇g5
2

∇g �    i �    j6
5

8
5

FIGURE 14.55 The function 
takes on its largest value on the

unit circle at
the point (3 5, 4 5) and its smallest value
at the point (Example 4). 
At each of these points, is a scalar
multiple of The figure shows the
gradients at the first point but not the
second.

§g .
§ƒ

s -3>5, -4>5d
>>

gsx, yd = x2
+ y2

- 1 = 0
3x + 4y

ƒsx, yd =

C

g2 � 0

g1 � 0

∇f

∇g2

∇g1

FIGURE 14.56 The vectors and 
lie in a plane perpendicular to the curve C
because is normal to the surface

and is normal to the surface
g2 = 0.

§g2g1 = 0
§g1

§g2§g1

(2)§ƒ = l§g1 + m§g2, g1sx, y, zd = 0, g2sx, y, zd = 0

Equations (2) have a nice geometric interpretation. The surfaces and (usu-
ally) intersect in a smooth curve, say C (Figure 14.56). Along this curve we seek the points
where ƒ has local maximum and minimum values relative to its other values on the curve.

g2 = 0g1 = 0
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These are the points where is normal to C, as we saw in Theorem 12. But and 
are also normal to C at these points because C lies in the surfaces and 
Therefore, lies in the plane determined by and which means that

for some and Since the points we seek also lie in both surfaces,
their coordinates must satisfy the equations and which are
the remaining requirements in Equations (2).

EXAMPLE 5 Finding Extremes of Distance on an Ellipse

The plane cuts the cylinder in an ellipse (Figure 14.57). Find
the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

(the square of the distance from (x, y, z) to the origin) subject to the constraints

(3)

(4)

The gradient equation in Equations (2) then gives

or

(5)

The scalar equations in Equations (5) yield

(6)

Equations (6) are satisfied simultaneously if either and or and

If then solving Equations (3) and (4) simultaneously to find the corresponding
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you
look at Figure 14.57.

If then Equations (3) and (4) give

The corresponding points on the ellipse are

P1 = a22
2

, 
22
2

, 1 - 22b and P2 = a- 22
2

, -
22
2

, 1 + 22b.

 x = ;

22
2
  z = 1 < 22.

 2x2
= 1  z = 1 - 2x

 x2
+ x2

- 1 = 0      x + x + z - 1 = 0

x = y,

z = 0,
x = y = z>s1 - ld.

l Z 1z = 0l = 1

 2y = 2ly + 2z Q s1 - ldy = z.

 2x = 2lx + 2z Q s1 - ldx = z, 

2x = 2lx + m, 2y = 2ly + m, 2z = m.

 2xi + 2yj + 2zk = s2lx + mdi + s2ly + mdj + mk

 2xi + 2yj + 2zk = ls2xi + 2yjd + msi + j + kd

 §ƒ = l§g1 + m§g2

g2sx, y, zd = x + y + z - 1 = 0.

g1sx, y, zd = x2
+ y2

- 1 = 0

ƒsx, y, zd = x2
+ y2

+ z2

x2
+ y2

= 1x + y + z = 1

g2sx, y, zd = 0,g1sx, y, zd = 0
m .l§ƒ = l§g1 + m§g2

§g2,§g1§ƒ
g2 = 0.g1 = 0

§g2§g1§ƒ
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Cylinder x2 � y2 � 1

Plane
x � y � z � 1

z

(0, 1, 0)
(1, 0, 0) y

x P1

P2

FIGURE 14.57 On the ellipse where the
plane and cylinder meet, what are the
points closest to and farthest from the
origin? (Example 5)
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Here we need to be careful, however. Although and both give local maxima of ƒ on
the ellipse, is farther from the origin than 

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on
the ellipse farthest from the origin is P2.

P1.P2

P2P1
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