14.9

Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like w = f(x, y), we have assumed x and y to be independent. In many applications, however, this is not the case. For example, the internal energy U of a gas may be expressed as a function U = f(P, V, T) of pressure P, volume V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, and T obey (and are constrained by) the ideal gas law

PV = nRT (*n* and *R* constant),

and fail to be independent. In this section we learn how to find partial derivatives in situations like this, which you may encounter in studying economics, engineering, or physics.†

Decide Which Variables Are Dependent and Which Are Independent

If the variables in a function w = f(x, y, z) are constrained by a relation like the one imposed on x, y, and z by the equation $z = x^2 + y^2$, the geometric meanings and the numerical values of the partial derivatives of f will depend on which variables are chosen to be dependent and which are chosen to be independent. To see how this choice can affect the outcome, we consider the calculation of $\partial w/\partial x$ when $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

EXAMPLE 1 Finding a Partial Derivative with Constrained Independent Variables

Find $\partial w/\partial x$ if $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

†This section is based on notes written for MIT by Arthur P. Mattuck.

Solution We are given two equations in the four unknowns x, y, z, and w. Like many such systems, this one can be solved for two of the unknowns (the dependent variables) in terms of the others (the independent variables). In being asked for $\partial w/\partial x$, we are told that w is to be a dependent variable and x an independent variable. The possible choices for the other variables come down to

Dependent	Independent
w, z	<i>x</i> , <i>y</i>
<i>w</i> , <i>y</i>	<i>x</i> , <i>z</i>

In either case, we can express w explicitly in terms of the selected independent variables. We do this by using the second equation $z = x^2 + y^2$ to eliminate the remaining dependent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from the first equation by replacing it by $x^2 + y^2$. The resulting expression for w is

$$w = x^{2} + y^{2} + z^{2} = x^{2} + y^{2} + (x^{2} + y^{2})^{2}$$
$$= x^{2} + y^{2} + x^{4} + 2x^{2}y^{2} + y^{4}$$

and

$$\frac{\partial w}{\partial x} = 2x + 4x^3 + 4xy^2. \tag{1}$$

This is the formula for $\partial w/\partial x$ when x and y are the independent variables.

In the second case, where the independent variables are x and z and the remaining dependent variable is y, we eliminate the dependent variable y in the expression for w by replacing y^2 in the second equation by $z - x^2$. This gives

$$w = x^{2} + y^{2} + z^{2} = x^{2} + (z - x^{2}) + z^{2} = z + z^{2}$$

and

$$\frac{\partial w}{\partial x} = 0.$$
 (2)

This is the formula for $\partial w/\partial x$ when x and z are the independent variables.

The formulas for $\partial w/\partial x$ in Equations (1) and (2) are genuinely different. We cannot change either formula into the other by using the relation $z = x^2 + y^2$. There is not just one $\partial w/\partial x$, there are two, and we see that the original instruction to find $\partial w/\partial x$ was incomplete. *Which* $\partial w/\partial x$? we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equations differ. The function $w = x^2 + y^2 + z^2$ measures the square of the distance from the point (x, y, z) to the origin. The condition $z = x^2 + y^2$ says that the point (x, y, z) lies on the paraboloid of revolution shown in Figure 14.58. What does it mean to calculate $\frac{\partial w}{\partial x}$ at a point P(x, y, z) that can move only on this surface? What is the value of $\frac{\partial w}{\partial x}$ when the coordinates of *P* are, say, (1, 0, 1)?

If we take x and y to be independent, then we find $\partial w/\partial x$ by holding y fixed (at y = 0 in this case) and letting x vary. Hence, P moves along the parabola $z = x^2$ in the xz-plane. As P moves on this parabola, w, which is the square of the distance from P to the origin, changes. We calculate $\partial w/\partial x$ in this case (our first solution above) to be

$$\frac{\partial w}{\partial x} = 2x + 4x^3 + 4xy^2.$$

FIGURE 14.58 If *P* is constrained to lie on the paraboloid $z = x^2 + y^2$, the value of the partial derivative of $w = x^2 + y^2 + z^2$ with respect to *x* at *P* depends on the direction of motion (Example 1). (1) As *x* changes, with y = 0, *P* moves up or down the surface on the parabola $z = x^2$ in the *xz*-plane with $\partial w/\partial x = 2x + 4x^3$. (2) As *x* changes, with z = 1, *P* moves on the circle $x^2 + y^2 = 1$, z = 1, and $\partial w/\partial x = 0$.

At the point P(1, 0, 1), the value of this derivative is

$$\frac{\partial w}{\partial x} = 2 + 4 + 0 = 6.$$

If we take x and z to be independent, then we find $\partial w/\partial x$ by holding z fixed while x varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane z = 1. As P moves along this circle, its distance from the origin remains constant, and w, being the square of this distance, does not change. That is,

$$\frac{\partial w}{\partial x} = 0,$$

as we found in our second solution.

How to Find $\partial w/\partial x$ When the Variables in w = f(x, y, z) Are Constrained by Another Equation

As we saw in Example 1, a typical routine for finding $\partial w/\partial x$ when the variables in the function w = f(x, y, z) are related by another equation has three steps. These steps apply to finding $\partial w/\partial y$ and $\partial w/\partial z$ as well.

- 1. *Decide* which variables are to be dependent and which are to be independent. (In practice, the decision is based on the physical or theoretical context of our work. In the exercises at the end of this section, we say which variables are which.)
- 2. *Eliminate* the other dependent variable(s) in the expression for *w*.
- **3.** *Differentiate* as usual.

If we cannot carry out Step 2 after deciding which variables are dependent, we differentiate the equations as they are and try to solve for $\partial w/\partial x$ afterward. The next example shows how this is done.

EXAMPLE 2 Finding a Partial Derivative with Identified Constrained Independent Variables

Find $\partial w/\partial x$ at the point (x, y, z) = (2, -1, 1) if

$$w = x^2 + y^2 + z^2$$
, $z^3 - xy + yz + y^3 = 1$,

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differentiate both equations implicitly with respect to x, treating x and y as independent variables and w and z as dependent variables. This gives

$$\frac{\partial w}{\partial x} = 2x + 2z \frac{\partial z}{\partial x} \tag{3}$$

and

$$3z^{2}\frac{\partial z}{\partial x} - y + y\frac{\partial z}{\partial x} + 0 = 0.$$
 (4)

These equations may now be combined to express $\partial w/\partial x$ in terms of x, y, and z. We solve Equation (4) for $\partial z/\partial x$ to get

$$\frac{\partial z}{\partial x} = \frac{y}{y + 3z^2}$$

and substitute into Equation (3) to get

$$\frac{\partial w}{\partial x} = 2x + \frac{2yz}{y + 3z^2} \,.$$

The value of this derivative at (x, y, z) = (2, -1, 1) is

$$\left(\frac{\partial w}{\partial x}\right)_{(2,-1,1)} = 2(2) + \frac{2(-1)(1)}{-1 + 3(1)^2} = 4 + \frac{-2}{2} = 3.$$

HISTORICAL BIOGRAPHY

Sonya Kovalevsky

(1850–1891)

Notation

To show what variables are assumed to be independent in calculating a derivative, we can use the following notation:

$$\left(\frac{\partial w}{\partial x}\right)_{y} \qquad \frac{\partial w}{\partial x} \text{ with } x \text{ and } y \text{ independent}$$
$$\left(\frac{\partial f}{\partial y}\right)_{x, t} \qquad \frac{\partial f}{\partial y} \text{ with } y, x \text{ and } t \text{ independent}$$

EXAMPLE 3 Finding a Partial Derivative with Constrained Variables Notationally Identified

Find $(\partial w/\partial x)_{y,z}$ if $w = x^2 + y - z + \sin t$ and x + y = t.

Solution With x, y, z independent, we have

$$t = x + y, \qquad w = x^{2} + y - z + \sin(x + y)$$
$$\left(\frac{\partial w}{\partial x}\right)_{y,z} = 2x + 0 - 0 + \cos(x + y)\frac{\partial}{\partial x}(x + y)$$
$$= 2x + \cos(x + y).$$

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow diagram that shows how the variables and functions are related. If

$$w = x^2 + y - z + \sin t$$
 and $x + y = t$

and we are asked to find $\partial w/\partial x$ when x, y, and z are independent, the appropriate diagram is one like this:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \rightarrow w$$
Independent Intermediate Dependent variables variables (5)

To avoid confusion between the independent and intermediate variables with the same symbolic names in the diagram, it is helpful to rename the intermediate variables (so they are seen as *functions* of the independent variables). Thus, let u = x, v = y, and s = z denote the renamed intermediate variables. With this notation, the arrow diagram becomes

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} u \\ v \\ s \\ t \end{pmatrix} \rightarrow w$$
Independent Intermediate Dependent variables and variable relations
$$\begin{array}{c} u = x \\ v = y \\ s = z \\ t = x + y \end{array}$$
(6)

The diagram shows the independent variables on the left, the intermediate variables and their relation to the independent variables in the middle, and the dependent variable on the right. The function w now becomes

where

$$w = u^2 + v - s + \sin t,$$

u = x, v = y, s = z, and t = x + y.

To find $\partial w/\partial x$, we apply the four-variable form of the Chain Rule to *w*, guided by the arrow diagram in Equation (6):

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial w}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial x}$$

$$= (2u)(1) + (1)(0) + (-1)(0) + (\cos t)(1)$$

$$= 2u + \cos t$$

$$= 2x + \cos (x + y).$$
Substituting the original independent variables $u = x$ and $t = x + y$.