14.9 Partial Derivatives with Constrained Variables **1053**

EXERCISES 14.9

Finding Partial Derivatives with Constrained Variables

In Exercises 1–3, begin by drawing a diagram that shows the relations among the variables.

1. If
$$w = x^2 + y^2 + z^2$$
 and $z = x^2 + y^2$, find
a. $\left(\frac{\partial w}{\partial y}\right)_z$ b. $\left(\frac{\partial w}{\partial z}\right)_x$ c. $\left(\frac{\partial w}{\partial z}\right)_y$.

2. If
$$w = x^2 + y - z + \sin t$$
 and $x + y = t$, find
a. $\left(\frac{\partial w}{\partial y}\right)_{x,z}$ b. $\left(\frac{\partial w}{\partial y}\right)_{z,t}$ c. $\left(\frac{\partial w}{\partial z}\right)_{x,y}$
d. $\left(\frac{\partial w}{\partial z}\right)_{y,t}$ e. $\left(\frac{\partial w}{\partial t}\right)_{x,z}$ f. $\left(\frac{\partial w}{\partial t}\right)_{y,z}$.

3. Let U = f(P, V, T) be the internal energy of a gas that obeys the ideal gas law PV = nRT (*n* and *R* constant). Find

a.
$$\left(\frac{\partial U}{\partial P}\right)_V$$
 b. $\left(\frac{\partial U}{\partial T}\right)_V$

4. Find

a.
$$\left(\frac{\partial w}{\partial x}\right)_y$$
 b. $\left(\frac{\partial w}{\partial z}\right)_y$
at the point $(x, y, z) = (0, 1, \pi)$ if
 $w = x^2 + y^2 + z^2$ and $y \sin z + z \sin x = 0$.

5. Find

a.
$$\left(\frac{\partial w}{\partial y}\right)_x$$
 b. $\left(\frac{\partial w}{\partial y}\right)_z$
at the point $(w, x, y, z) = (4, 2, 1, -1)$ if

$$w = x^2y^2 + yz - z^3$$
 and $x^2 + y^2 + z^2 = 6$.

- 6. Find $(\partial u/\partial y)_x$ at the point $(u, v) = (\sqrt{2}, 1)$, if $x = u^2 + v^2$ and y = uv.
- 7. Suppose that $x^2 + y^2 = r^2$ and $x = r \cos \theta$, as in polar coordinates. Find

$$\left(\frac{\partial x}{\partial r}\right)_{\theta}$$
 and $\left(\frac{\partial r}{\partial x}\right)_{y}$.

8. Suppose that

$$w = x^2 - y^2 + 4z + t$$
 and $x + 2z + t = 25$.

Show that the equations

$$\frac{\partial w}{\partial x} = 2x - 1$$
 and $\frac{\partial w}{\partial x} = 2x - 2$

each give $\partial w/\partial x$, depending on which variables are chosen to be dependent and which variables are chosen to be independent. Identify the independent variables in each case.

Partial Derivatives Without Specific Formulas

9. Establish the fact, widely used in hydrodynamics, that if f(x, y, z) = 0, then

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$$

(*Hint:* Express all the derivatives in terms of the formal partial derivatives $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$.)

10. If z = x + f(u), where u = xy, show that

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = x.$$

11. Suppose that the equation g(x, y, z) = 0 determines z as a differentiable function of the independent variables x and y and that g_z ≠ 0. Show that

$$\left(\frac{\partial z}{\partial y}\right)_x = -\frac{\partial g/\partial y}{\partial g/\partial z}.$$

12. Suppose that f(x, y, z, w) = 0 and g(x, y, z, w) = 0 determine z and w as differentiable functions of the independent variables x and y, and suppose that

$$\frac{\partial f}{\partial z}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial z} \neq 0.$$

Show that

$$\left(\frac{\partial z}{\partial x}\right)_{y} = -\frac{\frac{\partial f}{\partial x}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial x}}{\frac{\partial f}{\partial z}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial z}}$$

and

$$\left(\frac{\partial w}{\partial y}\right)_{x} = -\frac{\frac{\partial f}{\partial z}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial z}}{\frac{\partial f}{\partial z}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial z}}.$$