14.10 Taylor's Formula for Two Variables

This section uses Taylor's formula to derive the Second Derivative Test for local extreme values (Section 14.7) and the error formula for linearizations of functions of two independent variables (Section 14.6). The use of Taylor's formula in these derivations leads to an extension of the formula that provides polynomial approximations of all orders for functions of two independent variables.

Derivation of the Second Derivative Test

Let f(x, y) have continuous partial derivatives in an open region *R* containing a point P(a, b) where $f_x = f_y = 0$ (Figure 14.59). Let *h* and *k* be increments small enough to put the

FIGURE 14.59 We begin the derivation of the second derivative test at P(a, b) by parametrizing a typical line segment from *P* to a point *S* nearby.

point S(a + h, b + k) and the line segment joining it to P inside R. We parametrize the segment PS as

$$x = a + th, \qquad y = b + tk, \qquad 0 \le t \le 1.$$

If F(t) = f(a + th, b + tk), the Chain Rule gives

х

$$F'(t) = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} = hf_x + kf_y.$$

Since f_x and f_y are differentiable (they have continuous partial derivatives), F' is a differentiable function of t and

$$F'' = \frac{\partial F'}{\partial x}\frac{dx}{dt} + \frac{\partial F'}{\partial y}\frac{dy}{dt} = \frac{\partial}{\partial x}(hf_x + kf_y) \cdot h + \frac{\partial}{\partial y}(hf_x + kf_y) \cdot k$$
$$= h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy}. \qquad f_{xy} = f_{yx}$$

Since F and F' are continuous on [0, 1] and F' is differentiable on (0, 1), we can apply Taylor's formula with n = 2 and a = 0 to obtain

$$F(1) = F(0) + F'(0)(1 - 0) + F''(c)\frac{(1 - 0)^2}{2}$$

$$F(1) = F(0) + F'(0) + \frac{1}{2}F''(c)$$
(1)

for some c between 0 and 1. Writing Equation (1) in terms of f gives

$$f(a + h, b + k) = f(a, b) + hf_x(a, b) + kf_y(a, b) + \frac{1}{2} \left(h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right) \Big|_{(a+ch, b+ck)}.$$
 (2)

Since $f_x(a, b) = f_y(a, b) = 0$, this reduces to

$$f(a + h, b + k) - f(a, b) = \frac{1}{2} \left(h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right) \Big|_{(a+ch, b+ck)}.$$
 (3)

The presence of an extremum of f at (a, b) is determined by the sign of f(a + h, b + k) - f(a, b). By Equation (3), this is the same as the sign of

$$Q(c) = (h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy})|_{(a+ch,b+ck)}.$$

Now, if $Q(0) \neq 0$, the sign of Q(c) will be the same as the sign of Q(0) for sufficiently small values of h and k. We can predict the sign of

$$Q(0) = h^2 f_{xx}(a, b) + 2hk f_{xy}(a, b) + k^2 f_{yy}(a, b)$$
(4)

from the signs of f_{xx} and $f_{xx}f_{yy} - f_{xy}^2$ at (a, b). Multiply both sides of Equation (4) by f_{xx} and rearrange the right-hand side to get

$$f_{xx}Q(0) = (hf_{xx} + kf_{xy})^2 + (f_{xx}f_{yy} - f_{xy}^2)k^2.$$
 (5)

From Equation (5) we see that

- 1. If $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b), then Q(0) < 0 for all sufficiently small nonzero values of *h* and *k*, and *f* has a *local maximum* value at (a, b).
- 2. If $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b), then Q(0) > 0 for all sufficiently small nonzero values of h and k and f has a *local minimum* value at (a, b).

- 3. If $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b), there are combinations of arbitrarily small nonzero values of *h* and *k* for which Q(0) > 0, and other values for which Q(0) < 0. Arbitrarily close to the point $P_0(a, b, f(a, b))$ on the surface z = f(x, y) there are points above P_0 and points below P_0 , so *f* has a *saddle point* at (a, b).
- 4. If $f_{xx}f_{yy} f_{xy}^2 = 0$, another test is needed. The possibility that Q(0) equals zero prevents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y), between the values of a function f(x, y), and its linearization L(x, y) at (x_0, y_0) satisfies the inequality

$$|E(x, y)| \le \frac{1}{2}M(|x - x_0| + |y - y_0|)^2.$$

The function f is assumed to have continuous second partial derivatives throughout an open set containing a closed rectangular region R centered at (x_0, y_0) . The number M is an upper bound for $|f_{xx}|, |f_{yy}|$, and $|f_{xy}|$ on R.

The inequality we want comes from Equation (2). We substitute x_0 and y_0 for a and b, and $x - x_0$ and $y - y_0$ for h and k, respectively, and rearrange the result as

$$f(x, y) = \underbrace{f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)}_{\text{linearization } L(x, y)}$$

$$+ \frac{1}{2} \underbrace{\left((x - x_0)^2 f_{xx} + 2(x - x_0)(y - y_0) f_{xy} + (y - y_0)^2 f_{yy} \right)}_{\text{error } E(x, y)} \Big|_{(x_0 + c(x - x_0), y_0 + c(y - y_0))}$$

This equation reveals that

$$|E| \leq \frac{1}{2} \left(|x - x_0|^2 |f_{xx}| + 2|x - x_0| |y - y_0| |f_{xy}| + |y - y_0|^2 |f_{yy}| \right).$$

Hence, if *M* is an upper bound for the values of $|f_{xx}|, |f_{xy}|$, and $|f_{yy}|$ on *R*,

$$|E| \le \frac{1}{2} \left(|x - x_0|^2 M + 2 |x - x_0| |y - y_0| M + |y - y_0|^2 M \right)$$
$$= \frac{1}{2} M (|x - x_0| + |y - y_0|)^2.$$

Taylor's Formula for Functions of Two Variables

The formulas derived earlier for F' and F'' can be obtained by applying to f(x, y) the operators

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)$$
 and $\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 = h^2\frac{\partial^2}{\partial x^2} + 2hk\frac{\partial^2}{\partial x\partial y} + k^2\frac{\partial^2}{\partial y^2}$.

These are the first two instances of a more general formula,

$$F^{(n)}(t) = \frac{d^n}{dt^n} F(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(x, y),$$
(6)

which says that applying d^n/dt^n to F(t) gives the same result as applying the operator

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n$$

to f(x, y) after expanding it by the Binomial Theorem.

If partial derivatives of f through order n + 1 are continuous throughout a rectangular region centered at (a, b), we may extend the Taylor formula for F(t) to

$$F(t) = F(0) + F'(0)t + \frac{F''(0)}{2!}t^2 + \dots + \frac{F^{(n)}(0)}{n!}t^{(n)} + \text{ remainder},$$

and take t = 1 to obtain

$$F(1) = F(0) + F'(0) + \frac{F''(0)}{2!} + \dots + \frac{F^{(n)}(0)}{n!} + \text{ remainder.}$$

When we replace the first *n* derivatives on the right of this last series by their equivalent expressions from Equation (6) evaluated at t = 0 and add the appropriate remainder term, we arrive at the following formula.

Taylor's Formula for f(x, y) at the Point (a, b)

Suppose f(x, y) and its partial derivatives through order n + 1 are continuous throughout an open rectangular region R centered at a point (a, b). Then, throughout R,

$$f(a + h, b + k) = f(a, b) + (hf_x + kf_y)|_{(a,b)} + \frac{1}{2!}(h^2f_{xx} + 2hkf_{xy} + k^2f_{yy})|_{(a,b)} + \frac{1}{3!}(h^3f_{xxx} + 3h^2kf_{xxy} + 3hk^2f_{xyy} + k^3f_{yyy})|_{(a,b)} + \dots + \frac{1}{n!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f\Big|_{(a,b)} + \frac{1}{(n+1)!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n+1}f\Big|_{(a+ch,b+ck)}.$$
(7)

The first *n* derivative terms are evaluated at (a, b). The last term is evaluated at some point (a + ch, b + ck) on the line segment joining (a, b) and (a + h, b + k).

If (a, b) = (0, 0) and we treat *h* and *k* as independent variables (denoting them now by *x* and *y*), then Equation (7) assumes the following simpler form.

Taylor's Formula for f(x, y) at the Origin

$$f(x, y) = f(0, 0) + xf_x + yf_y + \frac{1}{2!}(x^2 f_{xx} + 2xyf_{xy} + y^2 f_{yy}) + \frac{1}{3!}(x^3 f_{xxx} + 3x^2 y f_{xxy} + 3xy^2 f_{xyy} + y^3 f_{yyy}) + \dots + \frac{1}{n!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^n f + \frac{1}{(n+1)!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^{n+1} f\Big|_{(cx,cy)}$$
(8)

The first *n* derivative terms are evaluated at (0, 0). The last term is evaluated at a point on the line segment joining the origin and (x, y).

Taylor's formula provides polynomial approximations of two-variable functions. The first n derivative terms give the polynomial; the last term gives the approximation error. The first three terms of Taylor's formula give the function's linearization. To improve on the linearization, we add higher power terms.

EXAMPLE 1 Finding a Quadratic Approximation

Find a quadratic approximation to $f(x, y) = \sin x \sin y$ near the origin. How accurate is the approximation if $|x| \le 0.1$ and $|y| \le 0.1$?

Solution We take n = 2 in Equation (8):

$$f(x, y) = f(0, 0) + (xf_x + yf_y) + \frac{1}{2}(x^2f_{xx} + 2xyf_{xy} + y^2f_{yy}) + \frac{1}{6}(x^3f_{xxx} + 3x^2yf_{xxy} + 3xy^2f_{xyy} + y^3f_{yyy})_{(cx,cy)}$$

with

$$\begin{aligned} f(0,0) &= \sin x \sin y |_{(0,0)} = 0, \qquad f_{xx}(0,0) = -\sin x \sin y |_{(0,0)} = 0, \\ f_x(0,0) &= \cos x \sin y |_{(0,0)} = 0, \qquad f_{xy}(0,0) = \cos x \cos y |_{(0,0)} = 1, \\ f_y(0,0) &= \sin x \cos y |_{(0,0)} = 0, \qquad f_{yy}(0,0) = -\sin x \sin y |_{(0,0)} = 0, \end{aligned}$$

we have

$$\sin x \sin y \approx 0 + 0 + 0 + \frac{1}{2} (x^2(0) + 2xy(1) + y^2(0)),$$

 $\sin x \sin y \approx xy.$

The error in the approximation is

$$E(x, y) = \frac{1}{6} \left(x^3 f_{xxx} + 3x^2 y f_{xxy} + 3x y^2 f_{xyy} + y^3 f_{yyy} \right) |_{(cx, cy)}.$$

The third derivatives never exceed 1 in absolute value because they are products of sines and cosines. Also, $|x| \le 0.1$ and $|y| \le 0.1$. Hence

$$|E(x,y)| \le \frac{1}{6}((0.1)^3 + 3(0.1)^3 + 3(0.1)^3 + (0.1)^3) = \frac{8}{6}(0.1)^3 \le 0.00134$$

(rounded up). The error will not exceed 0.00134 if $|x| \le 0.1$ and $|y| \le 0.1$.