EXERCISES 14.10

Finding Quadratic and Cubic Approximations

In Exercises 1–10, use Taylor's formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin.

1.
$$f(x, y) = xe^{y}$$

$$2. \ f(x,y) = e^x \cos y$$

3. $f(x, y) = y \sin x$

5.
$$f(x, y) = e^x \ln(1 + y)$$

7.
$$f(x, y) = \sin(x^2 + y^2)$$
 8. $f(x, y) = \cos(x^2 + y^2)$

4. $f(x, y) = \sin x \cos y$

6.
$$f(x, y) = \ln(2x + y + 1)$$

3.
$$f(x, y) = \cos(x^2 + y^2)$$

9.
$$f(x,y) = \frac{1}{1-x-y}$$

9.
$$f(x,y) = \frac{1}{1-x-y}$$
 10. $f(x,y) = \frac{1}{1-x-y+xy}$

- 11. Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.
- 12. Use Taylor's formula to find a quadratic approximation of $e^x \sin y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.