Chapter 14 Practice Exercises

Domain, Range, and Level Curves

In Exercises 1–4, find the domain and range of the given function and identify its level curves. Sketch a typical level curve.

1.
$$
f(x, y) = 9x^2 + y^2
$$

\n**2.** $f(x, y) = e^{x+y}$
\n**3.** $g(x, y) = 1/xy$
\n**4.** $g(x, y) = \sqrt{x^2 - y}$

In Exercises 5–8, find the domain and range of the given function and identify its level surfaces. Sketch a typical level surface.

5.
$$
f(x, y, z) = x^2 + y^2 - z
$$

\n6. $g(x, y, z) = x^2 + 4y^2 + 9z^2$
\n7. $h(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$
\n8. $k(x, y, z) = \frac{1}{x^2 + y^2 + z^2 + 1}$

Evaluating Limits

Find the limits in Exercises 9–14.

9.
$$
\lim_{(xy)\to(\pi,\ln 2)} e^y \cos x
$$

\n10.
$$
\lim_{(xy)\to(0,0)} \frac{2+y}{x + \cos y}
$$

\n11.
$$
\lim_{(xy)\to(1,1)} \frac{x-y}{x^2 - y^2}
$$

\n12.
$$
\lim_{(xy)\to(1,1)} \frac{x^3y^3 - 1}{xy - 1}
$$

\n13.
$$
\lim_{P\to(1,-1,e)} \ln|x + y + z|
$$

\n14.
$$
\lim_{P\to(1,-1,-1)} \tan^{-1}(x + y + z)
$$

By considering different paths of approach, show that the limits in Exercises 15 and 16 do not exist.

15.
$$
\lim_{\substack{(xy)\to(0,0)\\ y\neq x^2}} \frac{y}{x^2-y}
$$
16.
$$
\lim_{\substack{(xy)\to(0,0)\\ xy\neq 0}} \frac{x^2+y^2}{xy}
$$

17. Continuous extension Let $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$. Is it possible to define $f(0, 0)$ in a way that makes *f* continuous at the origin? Why?

18. Continuous extension Let

$$
f(x, y) = \begin{cases} \frac{\sin (x - y)}{|x| + |y|}, & |x| + |y| \neq 0\\ 0, & (x, y) = (0, 0). \end{cases}
$$

Is *ƒ* continuous at the origin? Why?

Partial Derivatives

In Exercises 19–24, find the partial derivative of the function with respect to each variable.

19.
$$
g(r, \theta) = r \cos \theta + r \sin \theta
$$

\n**20.** $f(x, y) = \frac{1}{2} \ln (x^2 + y^2) + \tan^{-1} \frac{y}{x}$
\n**21.** $f(R_1, R_2, R_3) = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

22.
$$
h(x, y, z) = \sin(2\pi x + y - 3z)
$$

23.
$$
P(n, R, T, V) = \frac{nRT}{V}
$$
 (the ideal gas law)
24. $f(r, l, T, w) = \frac{1}{2rl} \sqrt{\frac{T}{\pi w}}$

Second-Order Partials

Find the second-order partial derivatives of the functions in Exercises 25–28.

25.
$$
g(x, y) = y + \frac{x}{y}
$$

\n**26.** $g(x, y) = e^x + y \sin x$
\n**27.** $f(x, y) = x + xy - 5x^3 + \ln(x^2 + 1)$
\n**28.** $f(x, y) = y^2 - 3xy + \cos y + 7e^y$

Chain Rule Calculations

- **29.** Find dw/dt at $t = 0$ if $w = \sin(xy + \pi), x = e^t$, and $y = \pi$ $ln (t + 1)$.
- **30.** Find dw/dt at $t = 1$ if $w = xe^y + y \sin z \cos z, x = 2\sqrt{t}$, $y = t - 1 + \ln t$, and $z = \pi t$.
- **31.** Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ when $r = \pi$ and $s = 0$ if $w = \sin(2x y)$, $x = r + \sin s, y = rs.$
- **32.** Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ when $u = v = 0$ if $w = 0$ $\ln \sqrt{1 + x^2} - \tan^{-1} x$ and $x = 2e^u \cos v$.
- **33.** Find the value of the derivative of $f(x, y, z) = xy + yz + xz$ with respect to *t* on the curve $x = \cos t$, $y = \sin t$, $z = \cos 2t$ at $t = 1$.
- **34.** Show that if $w = f(s)$ is any differentiable function of *s* and if $s = y + 5x$, then

$$
\frac{\partial w}{\partial x} - 5 \frac{\partial w}{\partial y} = 0.
$$

Implicit Differentiation

Assuming that the equations in Exercises 35 and 36 define *y* as a differentiable function of *x*, find the value of dy/dx at point *P*.

35.
$$
1 - x - y^2 - \sin xy = 0
$$
, $P(0, 1)$
36. $2xy + e^{x+y} - 2 = 0$, $P(0, \ln 2)$

Directional Derivatives

In Exercises 37–40, find the directions in which *f* increases and decreases most rapidly at P_0 and find the derivative of f in each direction. Also, find the derivative of f at P_0 in the direction of the vector **v**.

37.
$$
f(x, y) = \cos x \cos y
$$
, $P_0(\pi/4, \pi/4)$, $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$
\n38. $f(x, y) = x^2 e^{-2y}$, $P_0(1, 0)$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$
\n39. $f(x, y, z) = \ln(2x + 3y + 6z)$, $P_0(-1, -1, 1)$,
\n $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$

40. $f(x, y, z) = x^2 + 3xy - z^2 + 2y + z + 4$, $P_0(0, 0, 0)$, **Tangent Lines to Curves** $v = i + j + k$

41. Derivative in velocity direction Find the derivative of $f(x, y, z) = xyz$ in the direction of the velocity vector of the helix

$$
\mathbf{r}(t) = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + 3t\mathbf{k}
$$

at $t = \pi/3$.

- **42. Maximum directional derivative** What is the largest value that the directional derivative of $f(x, y, z) = xyz$ can have at the point $(1, 1, 1)$?
- **43. Directional derivatives with given values** At the point (1, 2), the function $f(x, y)$ has a derivative of 2 in the direction toward $(2, 2)$ and a derivative of -2 in the direction toward $(1, 1)$.
	- **a.** Find $f_x(1, 2)$ and $f_y(1, 2)$.
	- **b.** Find the derivative of *ƒ* at (1, 2) in the direction toward the point (4, 6).
- **44.** Which of the following statements are true if $f(x, y)$ is differentiable at (x_0, y_0) ? Give reasons for your answers.
	- **a.** If **u** is a unit vector, the derivative of f at (x_0, y_0) in the if **u** is a unit vector, the derivative of f at (x_0, y_0)
direction of **u** is $(f_x(x_0, y_0)$ **i** + $f_y(x_0, y_0)$ **j**) • **u**.
	- **b.** The derivative of f at (x_0, y_0) in the direction of **u** is a vector.
	- **c.** The directional derivative of f at (x_0, y_0) has its greatest value in the direction of ∇f .
	- **d.** At (x_0, y_0) , vector ∇f is normal to the curve $f(x, y) = f(x_0, y_0).$

Gradients, Tangent Planes, and Normal Lines

In Exercises 45 and 46, sketch the surface $f(x, y, z) = c$ together with ∇f at the given points.

45.
$$
x^2 + y + z^2 = 0
$$
; (0, -1, ±1), (0, 0, 0)
46. $y^2 + z^2 = 4$; (2, ±2, 0), (2, 0, ±2)

In Exercises 47 and 48, find an equation for the plane tangent to the level surface $f(x, y, z) = c$ at the point P_0 . Also, find parametric equations for the line that is normal to the surface at P_0 .

47.
$$
x^2 - y - 5z = 0
$$
, $P_0(2, -1, 1)$
\n**48.** $x^2 + y^2 + z = 4$, $P_0(1, 1, 2)$

In Exercises 49 and 50, find an equation for the plane tangent to the surface $z = f(x, y)$ at the given point.

49.
$$
z = \ln(x^2 + y^2)
$$
, (0, 1, 0)
50. $z = 1/(x^2 + y^2)$, (1, 1, 1/2)

In Exercises 51 and 52, find equations for the lines that are tangent and normal to the level curve $f(x, y) = c$ at the point P_0 . Then sketch the lines and level curve together with ∇f at P_0 .

51.
$$
y - \sin x = 1
$$
, $P_0(\pi, 1)$ **52.** $\frac{y^2}{2} - \frac{x^2}{2} = \frac{3}{2}$, $P_0(1, 2)$

In Exercises 53 and 54, find parametric equations for the line that is tangent to the curve of intersection of the surfaces at the given point.

- **53.** Surfaces: $x^2 + 2y + 2z = 4$, $y = 1$ Point: $(1, 1, 1/2)$
- **54.** Surfaces: $x + y^2 + z = 2$, $y = 1$

Point: $(1/2, 1, 1/2)$

Linearizations

In Exercises 55 and 56, find the linearization $L(x, y)$ of the function $f(x, y)$ at the point P_0 . Then find an upper bound for the magnitude of the error *E* in the approximation $f(x, y) \approx L(x, y)$ over the rectangle *R*.

55.
$$
f(x, y) = \sin x \cos y
$$
, $P_0(\pi/4, \pi/4)$
\n*R*: $\left| x - \frac{\pi}{4} \right| \le 0.1$, $\left| y - \frac{\pi}{4} \right| \le 0.1$
\n56. $f(x, y) = xy - 3y^2 + 2$, $P_0(1, 1)$
\n*R*: $|x - 1| \le 0.1$, $|y - 1| \le 0.2$

Find the linearizations of the functions in Exercises 57 and 58 at the given points.

57. $f(x, y, z) = xy + 2yz - 3xz$ at $(1, 0, 0)$ and $(1, 1, 0)$ **58.** $f(x, y, z) = \sqrt{2} \cos x \sin (y + z)$ at $(0, 0, \pi/4)$ and $(\pi/4, \pi/4, 0)$

Estimates and Sensitivity to Change

- **59. Measuring the volume of a pipeline** You plan to calculate the volume inside a stretch of pipeline that is about 36 in. in diameter and 1 mile long. With which measurement should you be more careful, the length or the diameter? Why?
- **60. Sensitivity to change** Near the point $(1, 2)$, is $f(x, y) =$ $x^2 - xy + y^2 - 3$ more sensitive to changes in *x* or to changes in *y*? How do you know?
- **61. Change in an electrical circuit** Suppose that the current *I* (amperes) in an electrical circuit is related to the voltage *V* (volts) and the resistance *R* (ohms) by the equation $I = V/R$. If the voltage drops from 24 to 23 volts and the resistance drops from 100 to 80 ohms, will *I* increase or decrease? By about how much? Is the change in *I* more sensitive to change in the voltage or to change in the resistance? How do you know?
- **62. Maximum error in estimating the area of an ellipse** If $a = 10$ cm and $b = 16$ cm to the nearest millimeter, what should you expect the maximum percentage error to be in the calculated area $A = \pi ab$ of the ellipse $x^2/a^2 + y^2/b^2 = 1$?
- **63. Error in estimating a product** Let $y = uv$ and $z = u + v$, where u and v are positive independent variables.
	- **a.** If *u* is measured with an error of 2% and *v* with an error of 3%, about what is the percentage error in the calculated value of *y* ?
- **b.** Show that the percentage error in the calculated value of *z* is less than the percentage error in the value of *y*.
- **64. Cardiac index** To make different people comparable in studies of cardiac output (Section 3.7, Exercise 25), researchers divide the measured cardiac output by the body surface area to find the *cardiac index C*:

$$
C = \frac{\text{cardiac output}}{\text{body surface area}}.
$$

The body surface area *B* of a person with weight *w* and height *h* is approximated by the formula

$$
B = 71.84w^{0.425}h^{0.725},
$$

which gives B in square centimeters when w is measured in kilograms and *h* in centimeters. You are about to calculate the cardiac index of a person with the following measurements:

Which will have a greater effect on the calculation, a 1-kg error in measuring the weight or a 1-cm error in measuring the height?

Local Extrema

Test the functions in Exercises 65–70 for local maxima and minima and saddle points. Find each function's value at these points.

65.
$$
f(x, y) = x^2 - xy + y^2 + 2x + 2y - 4
$$

\n**66.** $f(x, y) = 5x^2 + 4xy - 2y^2 + 4x - 4y$
\n**67.** $f(x, y) = 2x^3 + 3xy + 2y^3$
\n**68.** $f(x, y) = x^3 + y^3 - 3xy + 15$
\n**69.** $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$
\n**70.** $f(x, y) = x^4 - 8x^2 + 3y^2 - 6y$

Absolute Extrema

In Exercises 71–78, find the absolute maximum and minimum values of *ƒ* on the region *R*.

71. $f(x, y) = x^2 + xy + y^2 - 3x + 3y$

R: The triangular region cut from the first quadrant by the line $x + y = 4$

72. $f(x, y) = x^2 - y^2 - 2x + 4y + 1$

R: The rectangular region in the first quadrant bounded by the coordinate axes and the lines $x = 4$ and $y = 2$

73.
$$
f(x, y) = y^2 - xy - 3y + 2x
$$

R: The square region enclosed by the lines $x = \pm 2$ and $y = \pm 2$

74. $f(x, y) = 2x + 2y - x^2 - y^2$

R: The square region bounded by the coordinate axes and the lines $x = 2$, $y = 2$ in the first quadrant

75. $f(x, y) = x^2 - y^2 - 2x + 4y$

R: The triangular region bounded below by the *x*-axis, above by the line $y = x + 2$, and on the right by the line $x = 2$

76. $f(x, y) = 4xy - x^4 - y^4 + 16$

R: The triangular region bounded below by the line $y = -2$, above by the line $y = x$, and on the right by the line $x = 2$

77.
$$
f(x, y) = x^3 + y^3 + 3x^2 - 3y^2
$$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

78.
$$
f(x, y) = x^3 + 3xy + y^3 + 1
$$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

Lagrange Multipliers

- **79. Extrema on a circle** Find the extreme values of $f(x, y) =$ $x^3 + y^2$ on the circle $x^2 + y^2 = 1$.
- **80. Extrema on a circle** Find the extreme values of $f(x, y) = xy$ on the circle $x^2 + y^2 = 1$.
- **81. Extrema in a disk** Find the extreme values of $f(x, y) =$ $x^2 + 3y^2 + 2y$ on the unit disk $x^2 + y^2 \le 1$.
- **82. Extrema in a disk** Find the extreme values of $f(x, y) =$ $x^2 + y^2 - 3x - xy$ on the disk $x^2 + y^2 \le 9$.
- **83. Extrema on a sphere** Find the extreme values of $f(x, y, z) =$ $x - y + z$ on the unit sphere $x^2 + y^2 + z^2 = 1$.
- **84. Minimum distance to origin** Find the points on the surface $z^2 - xy = 4$ closest to the origin.
- **85. Minimizing cost of a box** A closed rectangular box is to have volume $V \text{ cm}^3$. The cost of the material used in the box is a cents/cm² for top and bottom, b cents/cm² for front and back, and c cents/cm² for the remaining sides. What dimensions minimize the total cost of materials?
- **86. Least volume** Find the plane $x/a + y/b + z/c = 1$ that passes through the point $(2, 1, 2)$ and cuts off the least volume from the first octant.
- **87. Extrema on curve of intersecting surfaces** Find the extreme values of $f(x, y, z) = x(y + z)$ on the curve of intersection of the right circular cylinder $x^2 + y^2 = 1$ and the hyperbolic cylinder $xz = 1$.
- **88. Minimum distance to origin on curve of intersecting plane and cone** Find the point closest to the origin on the curve of intersection of the plane $x + y + z = 1$ and the cone $z^2 =$ $2x^2 + 2y^2$.

Partial Derivatives with Constrained Variables

In Exercises 89 and 90, begin by drawing a diagram that shows the relations among the variables.

89. If
$$
w = x^2 e^{yz}
$$
 and $z = x^2 - y^2$ find

a.
$$
\left(\frac{\partial w}{\partial y}\right)_z
$$
 b. $\left(\frac{\partial w}{\partial z}\right)_x$ **c.** $\left(\frac{\partial w}{\partial z}\right)_y$.

90. Let $U = f(P, V, T)$ be the internal energy of a gas that obeys the ideal gas law $PV = nRT$ (*n* and *R* constant). Find

a.
$$
\left(\frac{\partial U}{\partial T}\right)_P
$$
 b. $\left(\frac{\partial U}{\partial V}\right)_T$.

Theory and Examples

- **91.** Let $w = f(r, \theta), r = \sqrt{x^2 + y^2}$, and $\theta = \tan^{-1}(y/x)$. Find $\partial w/\partial x$ and $\partial w/\partial y$ and express your answers in terms of *r* and θ .
- **92.** Let $z = f(u, v)$, $u = ax + by$, and $v = ax by$. Express z_x and z_y in terms of f_u , f_v , and the constants *a* and *b*.
- **93.** If *a* and *b* are constants, $w = u^3 + \tanh u + \cos u$, and $u =$ $ax + by$, show that

$$
a\frac{\partial w}{\partial y} = b\frac{\partial w}{\partial x}.
$$

- **94.** Using the Chain Rule If $w = \ln(x^2 + y^2 + 2z)$, $x = r + s$, $y = r - s$, and $z = 2rs$, find w_r and w_s by the Chain Rule. Then check your answer another way.
- **95. Angle between vectors** The equations $e^u \cos v x = 0$ and e^u sin $v - y = 0$ define *u* and *v* as differentiable functions of *x* and *y*. Show that the angle between the vectors

$$
\frac{\partial u}{\partial x}\mathbf{i} + \frac{\partial u}{\partial y}\mathbf{j} \quad \text{and} \quad \frac{\partial v}{\partial x}\mathbf{i} + \frac{\partial v}{\partial y}\mathbf{j}
$$

is constant.

96. Polar coordinates and second derivatives Introducing polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ changes $f(x, y)$ to $g(r, \theta)$. Find the value of $\partial^2 g / \partial \theta^2$ at the point $(r, \theta) = (2, \pi/2)$, given that

$$
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 1
$$

at that point.

97. Normal line parallel to a plane Find the points on the surface

$$
(y + z)^2 + (z - x)^2 = 16
$$

where the normal line is parallel to the *yz*-plane.

98. Tangent plane parallel to *xy***-plane** Find the points on the surface

$$
xy + yz + zx - x - z^2 = 0
$$

where the tangent plane is parallel to the *xy*-plane.

- **99. When gradient is parallel to position vector** Suppose that $\nabla f(x, y, z)$ is always parallel to the position vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that $f(0, 0, a) = f(0, 0, -a)$ for any a.
- **100. Directional derivative in all directions, but no gradient** Show that the directional derivative of

$$
f(x, y, z) = \sqrt{x^2 + y^2 + z^2}
$$

at the origin equals 1 in any direction but that *ƒ* has no gradient vector at the origin.

101. Normal line through origin Show that the line normal to the surface $xy + z = 2$ at the point $(1, 1, 1)$ passes through the origin.

102. Tangent plane and normal line

- **a.** Sketch the surface $x^2 y^2 + z^2 = 4$.
- **b.** Find a vector normal to the surface at $(2, -3, 3)$. Add the vector to your sketch.
- **c.** Find equations for the tangent plane and normal line at $(2, -3, 3)$.