Chapter 14 Practice Exercises

Domain, Range, and Level Curves

In Exercises 1–4, find the domain and range of the given function and identify its level curves. Sketch a typical level curve.

1.
$$f(x, y) = 9x^2 + y^2$$
 2. $f(x, y) = e^{x+y}$

 3. $g(x, y) = 1/xy$
 4. $g(x, y) = \sqrt{x^2 - y}$

In Exercises 5–8, find the domain and range of the given function and identify its level surfaces. Sketch a typical level surface.

5.
$$f(x, y, z) = x^2 + y^2 - z$$

6. $g(x, y, z) = x^2 + 4y^2 + 9z^2$
7. $h(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$
8. $k(x, y, z) = \frac{1}{x^2 + y^2 + z^2 + 1}$

Evaluating Limits

Find the limits in Exercises 9–14.

9.
$$\lim_{(x,y)\to(\pi,\ln 2)} e^{y} \cos x$$
10.
$$\lim_{(x,y)\to(0,0)} \frac{2+y}{x+\cos y}$$
11.
$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^{2}-y^{2}}$$
12.
$$\lim_{(x,y)\to(1,1)} \frac{x^{3}y^{3}-1}{xy-1}$$
13.
$$\lim_{P\to(1,-1,e)} \ln|x+y+z|$$
14.
$$\lim_{P\to(1,-1,-1)} \tan^{-1}(x+y+z)$$

By considering different paths of approach, show that the limits in Exercises 15 and 16 do not exist.

15.
$$\lim_{\substack{(x,y) \to (0,0) \\ y \neq x^2}} \frac{y}{x^2 - y}$$
 16. $\lim_{\substack{(x,y) \to (0,0) \\ xy \neq 0}} \frac{x^2 + y^2}{xy}$

17. Continuous extension Let $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$. Is it possible to define f(0, 0) in a way that makes f continuous at the origin? Why?

18. Continuous extension Let

$$f(x,y) = \begin{cases} \frac{\sin(x-y)}{|x|+|y|}, & |x|+|y| \neq 0\\ 0, & (x,y) = (0,0). \end{cases}$$

Is *f* continuous at the origin? Why?

Partial Derivatives

In Exercises 19–24, find the partial derivative of the function with respect to each variable.

19.
$$g(r, \theta) = r \cos \theta + r \sin \theta$$

20. $f(x, y) = \frac{1}{2} \ln (x^2 + y^2) + \tan^{-1} \frac{y}{x}$
21. $f(R_1, R_2, R_3) = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
22. $h(x, y, z) = \sin (2\pi x + y - 3z)$

23.
$$P(n, R, T, V) = \frac{nRT}{V}$$
 (the ideal gas law)
24. $f(r, l, T, w) = \frac{1}{2rl}\sqrt{\frac{T}{\pi w}}$

Second-Order Partials

Find the second-order partial derivatives of the functions in Exercises 25–28.

25.
$$g(x, y) = y + \frac{x}{y}$$

26. $g(x, y) = e^{x} + y \sin x$
27. $f(x, y) = x + xy - 5x^{3} + \ln (x^{2} + 1)$
28. $f(x, y) = y^{2} - 3xy + \cos y + 7e^{y}$

Chain Rule Calculations

- **29.** Find dw/dt at t = 0 if $w = \sin(xy + \pi), x = e^t$, and $y = \ln(t + 1)$.
- **30.** Find dw/dt at t = 1 if $w = xe^{y} + y \sin z \cos z, x = 2\sqrt{t}$, $y = t 1 + \ln t$, and $z = \pi t$.
- **31.** Find $\partial w/\partial r$ and $\partial w/\partial s$ when $r = \pi$ and s = 0 if $w = \sin(2x y)$, $x = r + \sin s$, y = rs.
- **32.** Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ when u = v = 0 if $w = \ln \sqrt{1 + x^2} \tan^{-1} x$ and $x = 2e^u \cos v$.
- **33.** Find the value of the derivative of f(x, y, z) = xy + yz + xz with respect to *t* on the curve $x = \cos t$, $y = \sin t$, $z = \cos 2t$ at t = 1.
- **34.** Show that if w = f(s) is any differentiable function of s and if s = y + 5x, then

$$\frac{\partial w}{\partial x} - 5 \frac{\partial w}{\partial y} = 0.$$

Implicit Differentiation

Assuming that the equations in Exercises 35 and 36 define y as a differentiable function of x, find the value of dy/dx at point P.

35.
$$1 - x - y^2 - \sin xy = 0$$
, $P(0, 1)$
36. $2xy + e^{x+y} - 2 = 0$, $P(0, \ln 2)$

Directional Derivatives

In Exercises 37–40, find the directions in which f increases and decreases most rapidly at P_0 and find the derivative of f in each direction. Also, find the derivative of f at P_0 in the direction of the vector **v**.

37. $f(x, y) = \cos x \cos y$, $P_0(\pi/4, \pi/4)$, $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$ **38.** $f(x, y) = x^2 e^{-2y}$, $P_0(1, 0)$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$ **39.** $f(x, y, z) = \ln (2x + 3y + 6z)$, $P_0(-1, -1, 1)$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ **40.** $f(x, y, z) = x^2 + 3xy - z^2 + 2y + z + 4$, $P_0(0, 0, 0)$, $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$

41. Derivative in velocity direction Find the derivative of f(x, y, z) = xyz in the direction of the velocity vector of the helix

$$\mathbf{r}(t) = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + 3t\mathbf{k}$$

at $t = \pi/3$.

- **42.** Maximum directional derivative What is the largest value that the directional derivative of f(x, y, z) = xyz can have at the point (1, 1, 1)?
- **43.** Directional derivatives with given values At the point (1, 2), the function f(x, y) has a derivative of 2 in the direction toward (2, 2) and a derivative of -2 in the direction toward (1, 1).
 - **a.** Find $f_x(1, 2)$ and $f_y(1, 2)$.
 - **b.** Find the derivative of *f* at (1, 2) in the direction toward the point (4, 6).
- **44.** Which of the following statements are true if f(x, y) is differentiable at (x_0, y_0) ? Give reasons for your answers.
 - **a.** If **u** is a unit vector, the derivative of f at (x_0, y_0) in the direction of **u** is $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$.
 - **b.** The derivative of f at (x_0, y_0) in the direction of **u** is a vector.
 - **c.** The directional derivative of f at (x_0, y_0) has its greatest value in the direction of ∇f .
 - **d.** At (x_0, y_0) , vector ∇f is normal to the curve $f(x, y) = f(x_0, y_0)$.

Gradients, Tangent Planes, and Normal Lines

In Exercises 45 and 46, sketch the surface f(x, y, z) = c together with ∇f at the given points.

45.
$$x^2 + y + z^2 = 0;$$
 (0, -1, ±1), (0, 0, 0)
46. $y^2 + z^2 = 4;$ (2, ±2, 0), (2, 0, ±2)

In Exercises 47 and 48, find an equation for the plane tangent to the level surface f(x, y, z) = c at the point P_0 . Also, find parametric equations for the line that is normal to the surface at P_0 .

47.
$$x^2 - y - 5z = 0$$
, $P_0(2, -1, 1)$
48. $x^2 + y^2 + z = 4$, $P_0(1, 1, 2)$

In Exercises 49 and 50, find an equation for the plane tangent to the surface z = f(x, y) at the given point.

49.
$$z = \ln (x^2 + y^2)$$
, (0, 1, 0)
50. $z = 1/(x^2 + y^2)$, (1, 1, 1/2)

In Exercises 51 and 52, find equations for the lines that are tangent and normal to the level curve f(x, y) = c at the point P_0 . Then sketch the lines and level curve together with ∇f at P_0 .

51.
$$y - \sin x = 1$$
, $P_0(\pi, 1)$ **52.** $\frac{y^2}{2} - \frac{x^2}{2} = \frac{3}{2}$, $P_0(1, 2)$

Tangent Lines to Curves

In Exercises 53 and 54, find parametric equations for the line that is tangent to the curve of intersection of the surfaces at the given point.

53. Surfaces:
$$x^2 + 2y + 2z = 4$$
, $y = 1$
Point: (1, 1, 1/2)
54. Surfaces: $x + x^2 + z = 2$, $y = 1$

54. Surfaces: $x + y^2 + z = 2$, y = 1

Point: (1/2, 1, 1/2)

Linearizations

In Exercises 55 and 56, find the linearization L(x, y) of the function f(x, y) at the point P_0 . Then find an upper bound for the magnitude of the error *E* in the approximation $f(x, y) \approx L(x, y)$ over the rectangle *R*. **55.** $f(x, y) = \sin x \cos y$, $P_0(\pi/4, \pi/4)$

$$R: \left| x - \frac{\pi}{4} \right| \le 0.1, \quad \left| y - \frac{\pi}{4} \right| \le 0.1$$
56. $f(x, y) = xy - 3y^2 + 2, \quad P_0(1, 1)$

$$R: \left| x - 1 \right| \le 0.1, \quad \left| y - 1 \right| \le 0.2$$

Find the linearizations of the functions in Exercises 57 and 58 at the given points.

57. f(x, y, z) = xy + 2yz - 3xz at (1, 0, 0) and (1, 1, 0) **58.** $f(x, y, z) = \sqrt{2} \cos x \sin (y + z)$ at (0, 0, $\pi/4$) and ($\pi/4, \pi/4, 0$)

Estimates and Sensitivity to Change

- **59. Measuring the volume of a pipeline** You plan to calculate the volume inside a stretch of pipeline that is about 36 in. in diameter and 1 mile long. With which measurement should you be more careful, the length or the diameter? Why?
- 60. Sensitivity to change Near the point (1, 2), is $f(x, y) = x^2 xy + y^2 3$ more sensitive to changes in x or to changes in y? How do you know?
- **61.** Change in an electrical circuit Suppose that the current *I* (amperes) in an electrical circuit is related to the voltage *V* (volts) and the resistance *R* (ohms) by the equation I = V/R. If the voltage drops from 24 to 23 volts and the resistance drops from 100 to 80 ohms, will *I* increase or decrease? By about how much? Is the change in *I* more sensitive to change in the voltage or to change in the resistance? How do you know?
- 62. Maximum error in estimating the area of an ellipse If a = 10 cm and b = 16 cm to the nearest millimeter, what should you expect the maximum percentage error to be in the calculated area $A = \pi ab$ of the ellipse $x^2/a^2 + y^2/b^2 = 1$?
- 63. Error in estimating a product Let y = uv and z = u + v, where u and v are positive independent variables.
 - **a.** If *u* is measured with an error of 2% and *v* with an error of 3%, about what is the percentage error in the calculated value of *y*?

- **b.** Show that the percentage error in the calculated value of *z* is less than the percentage error in the value of *y*.
- **64.** Cardiac index To make different people comparable in studies of cardiac output (Section 3.7, Exercise 25), researchers divide the measured cardiac output by the body surface area to find the *cardiac index C*:

$$C = \frac{\text{cardiac output}}{\text{body surface area}}$$

The body surface area B of a person with weight w and height h is approximated by the formula

$$B = 71.84w^{0.425}h^{0.725}$$

which gives B in square centimeters when w is measured in kilograms and h in centimeters. You are about to calculate the cardiac index of a person with the following measurements:

Cardiac output:	7 L/min
Weight:	70 kg
Height:	180 cm

Which will have a greater effect on the calculation, a 1-kg error in measuring the weight or a 1-cm error in measuring the height?

Local Extrema

Test the functions in Exercises 65–70 for local maxima and minima and saddle points. Find each function's value at these points.

65.
$$f(x, y) = x^2 - xy + y^2 + 2x + 2y - 4$$

66. $f(x, y) = 5x^2 + 4xy - 2y^2 + 4x - 4y$
67. $f(x, y) = 2x^3 + 3xy + 2y^3$
68. $f(x, y) = x^3 + y^3 - 3xy + 15$
69. $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$
70. $f(x, y) = x^4 - 8x^2 + 3y^2 - 6y$

Absolute Extrema

In Exercises 71–78, find the absolute maximum and minimum values of f on the region R.

71. $f(x, y) = x^2 + xy + y^2 - 3x + 3y$

R: The triangular region cut from the first quadrant by the line x + y = 4

72. $f(x, y) = x^2 - y^2 - 2x + 4y + 1$

R: The rectangular region in the first quadrant bounded by the coordinate axes and the lines x = 4 and y = 2

73.
$$f(x, y) = y^2 - xy - 3y + 2x$$

R: The square region enclosed by the lines $x = \pm 2$ and $y = \pm 2$ 74. $f(x, y) = 2x + 2y - x^2 - y^2$

R: The square region bounded by the coordinate axes and the lines x = 2, y = 2 in the first quadrant

75. $f(x, y) = x^2 - y^2 - 2x + 4y$

R: The triangular region bounded below by the *x*-axis, above by the line y = x + 2, and on the right by the line x = 2

76. $f(x, y) = 4xy - x^4 - y^4 + 16$

R: The triangular region bounded below by the line y = -2, above by the line y = x, and on the right by the line x = 2

77.
$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

78.
$$f(x, y) = x^3 + 3xy + y^3 + 1$$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

Lagrange Multipliers

- **79. Extrema on a circle** Find the extreme values of $f(x, y) = x^3 + y^2$ on the circle $x^2 + y^2 = 1$.
- 80. Extrema on a circle Find the extreme values of f(x, y) = xy on the circle $x^2 + y^2 = 1$.
- 81. Extrema in a disk Find the extreme values of $f(x, y) = x^2 + 3y^2 + 2y$ on the unit disk $x^2 + y^2 \le 1$.
- 82. Extrema in a disk Find the extreme values of $f(x, y) = x^2 + y^2 3x xy$ on the disk $x^2 + y^2 \le 9$.
- 83. Extrema on a sphere Find the extreme values of f(x, y, z) = x y + z on the unit sphere $x^2 + y^2 + z^2 = 1$.
- 84. Minimum distance to origin Find the points on the surface $z^2 xy = 4$ closest to the origin.
- 85. Minimizing cost of a box A closed rectangular box is to have volume $V \text{ cm}^3$. The cost of the material used in the box is $a \text{ cents/cm}^2$ for top and bottom, $b \text{ cents/cm}^2$ for front and back, and $c \text{ cents/cm}^2$ for the remaining sides. What dimensions minimize the total cost of materials?
- **86.** Least volume Find the plane x/a + y/b + z/c = 1 that passes through the point (2, 1, 2) and cuts off the least volume from the first octant.
- 87. Extrema on curve of intersecting surfaces Find the extreme values of f(x, y, z) = x(y + z) on the curve of intersection of the right circular cylinder $x^2 + y^2 = 1$ and the hyperbolic cylinder xz = 1.
- 88. Minimum distance to origin on curve of intersecting plane and cone Find the point closest to the origin on the curve of intersection of the plane x + y + z = 1 and the cone $z^2 = 2x^2 + 2y^2$.

Partial Derivatives with Constrained Variables

In Exercises 89 and 90, begin by drawing a diagram that shows the relations among the variables.

89. If
$$w = x^2 e^{yz}$$
 and $z = x^2 - y^2$ find
a. $\left(\frac{\partial w}{\partial y}\right)_z$ b. $\left(\frac{\partial w}{\partial z}\right)_x$ c. $\left(\frac{\partial w}{\partial z}\right)_y$

90. Let U = f(P, V, T) be the internal energy of a gas that obeys the ideal gas law PV = nRT (*n* and *R* constant). Find

a.
$$\left(\frac{\partial U}{\partial T}\right)_P$$
 b. $\left(\frac{\partial U}{\partial V}\right)_T$.

Theory and Examples

- **91.** Let $w = f(r, \theta), r = \sqrt{x^2 + y^2}$, and $\theta = \tan^{-1}(y/x)$. Find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ and express your answers in terms of r and θ .
- **92.** Let z = f(u, v), u = ax + by, and v = ax by. Express z_x and z_y in terms of f_u , f_y , and the constants a and b.
- **93.** If a and b are constants, $w = u^3 + \tanh u + \cos u$, and u = ax + by, show that

$$a\frac{\partial w}{\partial y} = b\frac{\partial w}{\partial x}.$$

- 94. Using the Chain Rule If $w = \ln (x^2 + y^2 + 2z)$, x = r + s, y = r s, and z = 2rs, find w_r and w_s by the Chain Rule. Then check your answer another way.
- **95.** Angle between vectors The equations $e^u \cos v x = 0$ and $e^u \sin v y = 0$ define *u* and *v* as differentiable functions of *x* and *y*. Show that the angle between the vectors

$$\frac{\partial u}{\partial x}\mathbf{i} + \frac{\partial u}{\partial y}\mathbf{j}$$
 and $\frac{\partial v}{\partial x}\mathbf{i} + \frac{\partial v}{\partial y}\mathbf{j}$

is constant.

96. Polar coordinates and second derivatives Introducing polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ changes $f(x, y) \cos g(r, \theta)$. Find the value of $\partial^2 g / \partial \theta^2$ at the point $(r, \theta) = (2, \pi/2)$, given that

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 1$$

at that point.

97. Normal line parallel to a plane Find the points on the surface

$$(y+z)^2 + (z-x)^2 = 16$$

where the normal line is parallel to the yz-plane.

98. Tangent plane parallel to *xy***-plane** Find the points on the surface

$$xy + yz + zx - x - z^2 = 0$$

where the tangent plane is parallel to the *xy*-plane.

- **99. When gradient is parallel to position vector** Suppose that $\nabla f(x, y, z)$ is always parallel to the position vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that f(0, 0, a) = f(0, 0, -a) for any a.
- **100. Directional derivative in all directions, but no gradient** Show that the directional derivative of

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

at the origin equals 1 in any direction but that f has no gradient vector at the origin.

101. Normal line through origin Show that the line normal to the surface xy + z = 2 at the point (1, 1, 1) passes through the origin.

102. Tangent plane and normal line

- **a.** Sketch the surface $x^2 y^2 + z^2 = 4$.
- **b.** Find a vector normal to the surface at (2, -3, 3). Add the vector to your sketch.
- **c.** Find equations for the tangent plane and normal line at (2, -3, 3).