
OVERVIEW In this chapter we consider the integral of a function of two variables ƒ(x, y)
over a region in the plane and the integral of a function of three variables ƒ(x, y, z) over a
region in space. These integrals are called multiple integrals and are defined as the limit of
approximating Riemann sums, much like the single-variable integrals presented in
Chapter 5. We can use multiple integrals to calculate quantities that vary over two or three
dimensions, such as the total mass or the angular momentum of an object of varying den-
sity and the volumes of solids with general curved boundaries.
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Double Integrals

In Chapter 5 we defined the definite integral of a continuous function ƒ(x) over an interval
[a, b] as a limit of Riemann sums. In this section we extend this idea to define the integral
of a continuous function of two variables ƒ(x, y) over a bounded region R in the plane. In
both cases the integrals are limits of approximating Riemann sums. The Riemann sums for
the integral of a single-variable function ƒ(x) are obtained by partitioning a finite interval
into thin subintervals, multiplying the width of each subinterval by the value of ƒ at a point

inside that subinterval, and then adding together all the products. A similar method of
partitioning, multiplying, and summing is used to construct double integrals. However,
this time we pack a planar region R with small rectangles, rather than small subintervals.
We then take the product of each small rectangle’s area with the value of ƒ at a point inside
that rectangle, and finally sum together all these products. When ƒ is continuous, these sums
converge to a single number as each of the small rectangles shrinks in both width and height.
The limit is the double integral of ƒ over R. As with single integrals, we can evaluate multiple
integrals via antiderivatives, which frees us from the formidable task of calculating a double
integral directly from its definition as a limit of Riemann sums. The major practical problem
that arises in evaluating multiple integrals lies in determining the limits of integration. While
the integrals of Chapter 5 were evaluated over an interval, which is determined by its two
endpoints, multiple integrals are evaluated over a region in the plane or in space. This gives
rise to limits of integration which often involve variables, not just constants. Describing the
regions of integration is the main new issue that arises in the calculation of multiple integrals.

Double Integrals over Rectangles

We begin our investigation of double integrals by considering the simplest type of planar
region, a rectangle. We consider a function ƒ(x, y) defined on a rectangular region R,

R: a … x … b, c … y … d.

ck
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We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes
(Figure 15.1). The lines divide R into n rectangular pieces, where the number of such pieces
n gets large as the width and height of each piece gets small. These rectangles form a
partition of R. A small rectangular piece of width and height has area 
If we number the small pieces partitioning R in some order, then their areas are given by
numbers where is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point in the kth small rectangle,
multiply the value of ƒ at that point by the area and add together the products:

Depending on how we pick in the kth small rectangle, we may get different values
for 

We are interested in what happens to these Riemann sums as the widths and heights of
all the small rectangles in the partition of R approach zero. The norm of a partition P,
written is the largest width or height of any rectangle in the partition. If 
then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1.
Sometimes the Riemann sums converge as the norm of P goes to zero, written 
The resulting limit is then written as

As and the rectangles get narrow and short, their number n increases, so we can
also write this limit as

with the understanding that as and .
There are many choices involved in a limit of this kind. The collection of small rec-

tangles is determined by the grid of vertical and horizontal lines that determine a rectangu-
lar partition of R. In each of the resulting small rectangles there is a choice of an arbitrary
point at which ƒ is evaluated. These choices together determine a single Riemann
sum. To form a limit, we repeat the whole process again and again, choosing partitions
whose rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums exists, giving the same limiting value no matter what
choices are made, then the function ƒ is said to be integrable and the limit is called the
double integral of ƒ over R, written as

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable,
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are
also integrable, including functions which are discontinuous only on a finite number of
points or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may
interpret the double integral of ƒ over R as the volume of the 3-dimensional solid region
over the xy-plane bounded below by R and above by the surface (Figure 15.2).
Each term in the sum is the volume of a verticalSn = g  ƒsxk, ykd¢Akƒsxk, ykd¢Ak
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FIGURE 15.1 Rectangular grid
partitioning the region R into small
rectangles of area ¢Ak = ¢xk ¢yk.
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rectangular box that approximates the volume of the portion of the solid that stands di-
rectly above the base The sum thus approximates what we want to call the total
volume of the solid. We define this volume to be

where as 
As you might expect, this more general method of calculating volume agrees with the

methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum
approximations to the volume becoming more accurate as the number n of boxes increases.

n : q .¢Ak : 0

Volume = lim
n: q

 Sn = 6
R

 ƒsx, yd dA,

Sn¢Ak.
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FIGURE 15.2 Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of ƒ(x, y) over
the base region R.

(a) n � 16 (b) n � 64 (c) n � 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane over the
rectangular region in the xy-plane. If we apply the method of slic-
ing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the volume is

(1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as
the integral

(2)

which is the area under the curve in the plane of the cross-section at x. In
calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-
ing Equations (1) and (2), we see that the volume of the entire solid is

(3) = c7
2
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FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and
integrate with respect to y.
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If we just wanted to write a formula for the volume, without carrying out any of the
integrations, we could write

The expression on the right, called an iterated or repeated integral, says that the volume
is obtained by integrating with respect to y from to holding x
fixed, and then integrating the resulting expression in x with respect to x from to

The limits of integration 0 and 1 are associated with y, so they are placed on the
integral closest to dy. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with dx.

What would have happened if we had calculated the volume by slicing with planes
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional area is

(4)

The volume of the entire solid is therefore

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

The expression on the right says we can find the volume by integrating with
respect to x from to as in Equation (4) and integrating the result with respect
to y from to In this iterated integral, the order of integration is first x and
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the
double integral

over the rectangle The answer is that both iterated integrals
give the value of the double integral. This is what we would reasonably expect, since the
double integral measures the volume of the same region as the two iterated integrals. A
theorem published in 1907 by Guido Fubini says that the double integral of any continuous
function over a rectangle can be calculated as an iterated integral in either order of integra-
tion. (Fubini proved his theorem in greater generality, but this is what it says in our setting.)

R: 0 … x … 2, 0 … y … 1?
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FIGURE 15.5 To obtain the cross-
sectional area A(y), we hold y fixed and
integrate with respect to x.

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)

THEOREM 1 Fubini’s Theorem (First Form)
If ƒ(x, y) is continuous throughout the rectangular region 

then
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Fubini’s Theorem says that double integrals over rectangles can be calculated as
iterated integrals. Thus, we can evaluate a double integral by integrating with respect to
one variable at a time.

Fubini’s Theorem also says that we may calculate the double integral by integrating in
either order, a genuine convenience, as we see in Example 3. When we calculate a volume
by slicing, we may use either planes perpendicular to the x-axis or planes perpendicular to
the y-axis.

EXAMPLE 1 Evaluating a Double Integral

Calculate for

Solution By Fubini’s Theorem,

Reversing the order of integration gives the same answer:

 = L
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0
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ƒsx, yd = 1 - 6x2y and R: 0 … x … 2, -1 … y … 1.

4R ƒsx, yd dA
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USING TECHNOLOGY Multiple Integration

Most CAS can calculate both multiple and iterated integrals. The typical procedure is to
apply the CAS integrate command in nested iterations according to the order of integra-
tion you specify.

Integral Typical CAS Formulation

If a CAS cannot produce an exact value for a definite integral, it can usually find an ap-
proximate value numerically. Setting up a multiple integral for a CAS to solve can be a
highly nontrivial task, and requires an understanding of how to describe the boundaries
of the region and set up an appropriate integral.

int sint sx * cos s yd, x = 0 . . 1d, y = -Pi>3 . . Pi>4d;L
p>4

-p>3
 L

1

0
 x cos y dx dy

int sint sx ¿ 2 * y, xd, yd ;6x2y dx dy
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Double Integrals over Bounded Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region
R, such as the one in Figure 15.6, we again begin by covering R with a grid of small
rectangular cells whose union contains all points of R. This time, however, we cannot
exactly fill R with a finite number of rectangles lying inside R, since its boundary is
curved, and some of the small rectangles in the grid lie partly outside R. A partition of R
is formed by taking the rectangles that lie completely inside it, not using any that are
either partly or completely outside. For commonly arising regions, more and more of R
is included as the norm of a partition (the largest width or height of any rectangle used)
approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let be the area of the kth rectangle. We then choose a point in the kth
rectangle and form the Riemann sum

As the norm of the partition forming goes to zero, the width and height of
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

The nature of the boundary of R introduces issues not found in integrals over an inter-
val. When R has a curved boundary, the n rectangles of a partition lie inside R but do not
cover all of R. In order for a partition to approximate R well, the parts of R covered by
small rectangles lying partly outside R must become negligible as the norm of the partition
approaches zero. This property of being nearly filled in by a partition of small norm is
satisfied by all the regions that we will encounter. There is no problem with boundaries
made from polygons, circles, ellipses, and from continuous graphs over an interval, joined
end to end. A curve with a “fractal” type of shape would be problematic, but such curves
are not relevant for most applications. A careful discussion of which type of regions R can
be used for computing double integrals is left to a more advanced text.

Double integrals of continuous functions over nonrectangular regions have the same
algebraic properties (summarized further on) as integrals over rectangular regions. The do-
main Additivity Property says that if R is decomposed into nonoverlapping regions and

with boundaries that are again made of a finite number of line segments or smooth
curves (see Figure 15.7 for an example), then

If ƒ(x, y) is positive and continuous over R we define the volume of the solid region
between R and the surface to be as before (Figure 15.8).

If R is a region like the one shown in the xy-plane in Figure 15.9, bounded “above”
and “below” by the curves and and on the sides by the lines

we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area
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y = g2sxd

y = g1sxd
ƒsx, yd dy

x = a, x = b,
y = g1sxdy = g2sxd
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FIGURE 15.6 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.
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FIGURE 15.7 The Additivity Property for
rectangular regions holds for regions
bounded by continuous curves.
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and then integrate A(x) from to to get the volume as an iterated integral:

(5)

Similarly, if R is a region like the one shown in Figure 15.10, bounded by the curves
and and the lines and then the volume calculated by

slicing is given by the iterated integral

(6)

That the iterated integrals in Equations (5) and (6) both give the volume that we de-
fined to be the double integral of ƒ over R is a consequence of the following stronger form
of Fubini’s Theorem.
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 ƒsx, yd dx dy.

y = d,y = cx = h1s ydx = h2s yd

V = L
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a
 Asxd dx = L

b

a
 L

g2sxd

g1sxd
 ƒsx, yd dy dx.

x = bx = a
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FIGURE 15.8 We define the volumes of solids
with curved bases the same way we define the
volumes of solids with rectangular bases.
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FIGURE 15.9 The area of the vertical
slice shown here is

To calculate the volume of the solid, we
integrate this area from to x = b.x = a
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FIGURE 15.10 The volume of the solid
shown here is
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THEOREM 2 Fubini’s Theorem (Stronger Form)
Let ƒ(x, y) be continuous on a region R.

1. If R is defined by with and continu-
ous on [a, b], then

2. If R is defined by with and continuous
on [c, d ], then
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EXAMPLE 2 Finding Volume

Find the volume of the prism whose base is the triangle in the xy-plane bounded by the 
x-axis and the lines and and whose top lies in the plane

Solution See Figure 15.11 on page 1075. For any x between 0 and 1, y may vary from
to (Figure 15.11b). Hence,

When the order of integration is reversed (Figure 15.11c), the integral for the volume is

The two integrals are equal, as they should be.

Although Fubini’s Theorem assures us that a double integral may be calculated as an
iterated integral in either order of integration, the value of one integral may be easier to
find than the value of the other. The next example shows how this can happen.

EXAMPLE 3 Evaluating a Double Integral

Calculate

where R is the triangle in the xy-plane bounded by the x-axis, the line and the line

Solution The region of integration is shown in Figure 15.12. If we integrate first with
respect to y and then with respect to x, we find

If we reverse the order of integration and attempt to calculate
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we run into a problem, because cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations.

1sssin xd>xd dx

15.1 Double Integrals 1075

FIGURE 15.11 (a) Prism with a triangular base in the xy-plane. The volume of this prism is
defined as a double integral over R. To evaluate it as an iterated integral, we may integrate first with
respect to y and then with respect to x, or the other way around (Example 2).
(b) Integration limits of

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate
from left to right to include all the vertical lines in R.
(c) Integration limits of

If we integrate first with respect to x, we integrate along a horizontal line through R and then
integrate from bottom to top to include all the horizontal lines in R.
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FIGURE 15.12 The region of integration
in Example 3.
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Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in
the plane. Regions that are more complicated, and for which this procedure fails, can often
be split up into pieces on which the procedure works.

When faced with evaluating integrating first with respect to y and then
with respect to x, do the following:

1. Sketch. Sketch the region of integration and label the bounding curves.

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the
y-limits of integration and are usually functions of x (instead of constants).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here is

Leaves at
y � �1 � x2

Enters at
y � 1 � x

x

y

0 1x

L

1
R

Smallest x
is x � 0

Largest x
is x � 1

L
x = 1

x = 0
 L

y =21 - x2

y = 1 - x
 ƒsx, yd dy dx.

6
R

 ƒsx, yd dA =

x

y

0 1x

L

1
R

Leaves at
y � �1 � x2

Enters at
y � 1 � x

x

y

0 1

R

1 x2 � y2 � 1

x � y � 1

4R ƒsx, yddA,
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To evaluate the same double integral as an iterated integral with the order of integra-
tion reversed, use horizontal lines instead of vertical lines in Steps 2 and 3. The integral is

EXAMPLE 4 Reversing the Order of Integration

Sketch the region of integration for the integral

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities and
It is therefore the region bounded by the curves and between

and (Figure 15.13a).x = 2x = 0
y = 2xy = x20 … x … 2.

x2
… y … 2x

L
2

0
 L

2x

x2
s4x + 2d dy dx

x

y

Leaves at
x � �1 � y2

Enters at
x � 1 � y

0 1

y

1
R

Smallest y
is y � 0

Largest y
is y � 1

6
R

 ƒsx, yd dA = L
1

0
 L
21 - y 2

1 - y
 ƒsx, yd dx dy.
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y y

xx

y � 2x

y � x2

x � �yx �

FIGURE 15.13 Region of integration for Example 4.

To find limits for integrating in the reverse order, we imagine a horizontal line passing
from left to right through the region. It enters at and leaves at To
include all such lines, we let y run from to (Figure 15.13b). The integral is

The common value of these integrals is 8. 

L
4

0
 L
2y

y>2
s4x + 2d dx dy.

y = 4y = 0
x = 2y.x = y>2
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Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties
that are useful in computations and applications.

1078 Chapter 15: Multiple Integrals

Properties of Double Integrals
If ƒ(x, y) and g(x, y) are continuous, then

1. Constant Multiple:

2. Sum and Difference: 

3. Domination:

(a)

(b)

4. Additivity:

if R is the union of two nonoverlapping regions and (Figure 15.7).R2R1

6
R

 ƒsx, yd dA = 6
R1

 ƒsx, yd dA + 6
R2

 ƒsx, yd dA

6
R

 ƒsx, yd dA Ú 6
R

 gsx, yd dA if ƒsx, yd Ú gsx, yd on R

6
R

 ƒsx, yd dA Ú 0 if ƒsx, yd Ú 0 on R

6
R

sƒsx, yd ; gsx, ydd dA = 6
R

 ƒsx, yd dA ; 6
R

 gsx, yd dA

6
R

 cƒsx, yd dA = c6
R

 f (x, yd dA sany number cd

The idea behind these properties is that integrals behave like sums. If the function
ƒ(x, y) is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

is replaced by a Riemann sum for cƒ

Taking limits as shows that and 
are equal. It follows that the constant multiple property carries over from sums to double
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to
double integrals for the same reason. While this discussion gives the idea, an actual
proof that these properties hold requires a more careful analysis of how Riemann sums
converge.

limn:q cSn = 4R cf dAc limn:q Sn = c4R f dAn : q

a
n

k = 1
 cƒsxk, ykd ¢Ak = ca

n

k = 1
 ƒsxk, ykd ¢Ak = cSn .

Sn = a
n

k = 1
 ƒsxk, ykd ¢Ak
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