
15.2 Area, Moments, and Centers of Mass 1081

Area, Moments, and Centers of Mass

In this section, we show how to use double integrals to calculate the areas of bounded regions
in the plane and to find the average value of a function of two variables. Then we study the
physical problem of finding the center of mass of a thin plate covering a region in the plane.

Areas of Bounded Regions in the Plane

If we take in the definition of the double integral over a region R in the pre-
ceding section, the Riemann sums reduce to

(1)

This is simply the sum of the areas of the small rectangles in the partition of R, and
approximates what we would like to call the area of R. As the norm of a partition of R ap-
proaches zero, the height and width of all rectangles in the partition approach zero, and the
coverage of R becomes increasingly complete (Figure 15.14). We define the area of R to
be the limit
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FIGURE 15.14 As the norm of a partition
of the region R approaches zero, the sum
of the areas gives the area of R
defined by the double integral 4R dA.

¢Ak

DEFINITION Area
The area of a closed, bounded plane region R is

A = 6
R

 dA.

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it agrees with
the earlier definition on regions to which they both apply. To evaluate the integral in the
definition of area, we integrate the constant function over R.ƒsx, yd = 1
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EXAMPLE 1 Finding Area

Find the area of the region R bounded by and in the first quadrant.

Solution We sketch the region (Figure 15.15), noting where the two curves intersect,
and calculate the area as

Notice that the single integral obtained from evaluating the inside
iterated integral, is the integral for the area between these two curves using the method of
Section 5.5. 

EXAMPLE 2 Finding Area

Find the area of the region R enclosed by the parabola and the line 

Solution If we divide R into the regions and shown in Figure 15.16a, we may cal-
culate the area as

On the other hand, reversing the order of integration (Figure 15.16b) gives
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FIGURE 15.15 The region in Example 1.
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FIGURE 15.16 Calculating this area takes (a) two double integrals if the first integration is
with respect to x, but (b) only one if the first integration is with respect to y (Example 2).
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This second result, which requires only one integral, is simpler and is the only one we
would bother to write down in practice. The area is

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable
function of two variables defined on a bounded region in the plane, the average value is the
integral over the region divided by the area of the region. This can be visualized by think-
ing of the function as giving the height at one instant of some water sloshing around in a
tank whose vertical walls lie over the boundary of the region. The average height of the
water in the tank can be found by letting the water settle down to a constant height. The
height is then equal to the volume of water in the tank divided by the area of R. We are led
to define the average value of an integrable function ƒ over a region R to be
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(3)Average value of ƒ over R =
1

area of R
 6

R

 ƒ dA.

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R
divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from
the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance
of points in R from P.

EXAMPLE 3 Finding Average Value

Find the average value of over the rectangle 

Solution The value of the integral of ƒ over R is

The area of R is The average value of ƒ over R is   

Moments and Centers of Mass for Thin Flat Plates

In Section 6.4 we introduced the concepts of moments and centers of mass, and we saw
how to compute these quantities for thin rods or strips and for plates of constant density.
Using multiple integrals we can extend these calculations to a great variety of shapes with
varying density. We first consider the problem of finding the center of mass of a thin flat
plate: a disk of aluminum, say, or a triangular sheet of metal. We assume the distribution of

2>p.p.
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mass in such a plate to be continuous. A material’s density function, denoted by is
the mass per unit area. The mass of a plate is obtained by integrating the density function
over the region R forming the plate. The first moment about an axis is calculated by inte-
grating over R the distance from the axis times the density. The center of mass is found
from the first moments. Table 15.1 gives the double integral formulas for mass, first
moments, and center of mass.

dsx, yd,
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TABLE 15.1 Mass and first moment formulas for thin plates covering a region R
in the xy-plane

Center of mass: x =

My

M
, y =

Mx

M

First moments: Mx = 6
R

 ydsx, yddA, My = 6
R

 xdsx, yddA

Mass: M = 6
R

dsx, yddA is the density at (x, y)dsx, yd

EXAMPLE 4 Finding the Center of Mass of a Thin Plate of Variable Density

A thin plate covers the triangular region bounded by the x-axis and the lines and
in the first quadrant. The plate’s density at the point (x, y) is 
Find the plate’s mass, first moments, and center of mass about the coordinate

axes.

Solution We sketch the plate and put in enough detail to determine the limits of inte-
gration for the integrals we have to evaluate (Figure 15.17).

The plate’s mass is

The first moment about the x-axis is
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FIGURE 15.17 The triangular region
covered by the plate in Example 4.
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A similar calculation gives the moment about the y-axis:

The coordinates of the center of mass are therefore

Moments of Inertia

A body’s first moments (Table 15.1) tell us about balance and about the torque the body
exerts about different axes in a gravitational field. If the body is a rotating shaft, however,
we are more likely to be interested in how much energy is stored in the shaft or about how
much energy it will take to accelerate the shaft to a particular angular velocity. This is
where the second moment or moment of inertia comes in.

Think of partitioning the shaft into small blocks of mass and let denote the
distance from the kth block’s center of mass to the axis of rotation (Figure 15.18). If the
shaft rotates at an angular velocity of radians per second, the block’s center of
mass will trace its orbit at a linear speed of
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FIGURE 15.18 To find an integral for the amount of energy stored in
a rotating shaft, we first imagine the shaft to be partitioned into small
blocks. Each block has its own kinetic energy. We add the contributions
of the individual blocks to find the kinetic energy of the shaft.
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The integral approached by these sums as the shaft is partitioned into smaller and smaller
blocks gives the shaft’s kinetic energy:

(4)

The factor

is the moment of inertia of the shaft about its axis of rotation, and we see from Equation (4)
that the shaft’s kinetic energy is

The moment of inertia of a shaft resembles in some ways the inertia of a locomotive.
To start a locomotive with mass m moving at a linear velocity y, we need to provide a
kinetic energy of To stop the locomotive we have to remove this amount
of energy. To start a shaft with moment of inertia I rotating at an angular velocity we
need to provide a kinetic energy of To stop the shaft we have to take this
amount of energy back out. The shaft’s moment of inertia is analogous to the locomotive’s
mass. What makes the locomotive hard to start or stop is its mass. What makes the shaft
hard to start or stop is its moment of inertia. The moment of inertia depends not only on
the mass of the shaft, but also its distribution.

The moment of inertia also plays a role in determining how much a horizontal metal
beam will bend under a load. The stiffness of the beam is a constant times I, the moment of
inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The
greater the value of I, the stiffer the beam and the less it will bend under a given load. That
is why we use I-beams instead of beams whose cross-sections are square. The flanges at
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal
axis to maximize the value of I (Figure 15.19).

To see the moment of inertia at work, try the following experiment. Tape two coins to
the ends of a pencil and twiddle the pencil about the center of mass. The moment of inertia
accounts for the resistance you feel each time you change the direction of motion. Now
move the coins an equal distance toward the center of mass and twiddle the pencil again.
The system has the same mass and the same center of mass but now offers less resistance
to the changes in motion. The moment of inertia has been reduced. The moment of inertia
is what gives a baseball bat, golf club, or tennis racket its “feel.” Tennis rackets that weigh
the same, look the same, and have identical centers of mass will feel different and behave
differently if their masses are not distributed the same way.

Computations of moments of inertia for thin plates in the plane lead to double integral
formulas, which are summarized in Table 15.2. A small thin piece of mass is equal to
its small area multiplied by the density of a point in the piece. Computations of mo-
ments of inertia for objects occupying a region in space are discussed in Section 15.5.

The mathematical difference between the first moments and and the
moments of inertia, or second moments, and is that the second moments use the
squares of the “lever-arm” distances x and y.

The moment is also called the polar moment of inertia about the origin. It is calcu-
lated by integrating the density (mass per unit area) times the square
of the distance from a representative point (x, y) to the origin. Notice that 
once we find two, we get the third automatically. (The moment is sometimes called forIz,I0

I0 = Ix + Iy;
r2

= x2
+ y2,dsx, yd
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Beam B

Beam A

Axis

Axis

FIGURE 15.19 The greater the polar
moment of inertia of the cross-section of a
beam about the beam’s longitudinal axis,
the stiffer the beam. Beams A and B have
the same cross-sectional area, but A is
stiffer.
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moment of inertia about the z-axis. The identity is then called the
Perpendicular Axis Theorem.)

The radius of gyration is defined by the equation

It tells how far from the x-axis the entire mass of the plate might be concentrated to
give the same The radius of gyration gives a convenient way to express the moment
of inertia in terms of a mass and a length. The radii and are defined in a similar
way, with

We take square roots to get the formulas in Table 15.2, which gives the formulas for
moments of inertia (second moments) as well as for radii of gyration.

Iy = MRy
2 and I0 = MR0

2.

R0Ry

Ix .

Ix = MRx
2.

Rx

Iz = Ix + Iy
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TABLE 15.2 Second moment formulas for thin plates in the xy-plane

Moments of inertia (second moments):

About the x-axis:

About the y-axis:

About a line L:

About the origin 

(polar moment):

Radii of gyration: About the x-axis:

About the y-axis:

About the origin: R0 = 2I0>M
Ry = 2Iy>M
Rx = 2Ix>M

I0 = 6sx2
+ y2ddsx, yd dA = Ix + Iy

where rsx, yd = distance from  sx, yd to L

IL = 6 r 2sx, yddsx, yd dA, 
Iy = 6 x2dsx, yd dA

Ix = 6 y2dsx, yd dA

EXAMPLE 5 Finding Moments of Inertia and Radii of Gyration

For the thin plate in Example 4 (Figure 15.17), find the moments of inertia and radii of
gyration about the coordinate axes and the origin.

Solution Using the density function given in Example 4, the
moment of inertia about the x-axis is

 = C8x5
+ 4x4 D01 = 12.

 = L
1

0
 c2xy3
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3
2

 y4
+ 2y3 d
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1
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Similarly, the moment of inertia about the y-axis is

Notice that we integrate times density in calculating and times density to find 
Since we know and we do not need to evaluate an integral to find we can use

the equation instead:

The three radii of gyration are

Moments are also of importance in statistics. The first moment is used in computing
the mean of a set of data, and the second moment is used in computing the variance

and the standard deviation Third and fourth moments are used for computing
statistical quantities known as skewness and kurtosis.

Centroids of Geometric Figures

When the density of an object is constant, it cancels out of the numerator and denominator
of the formulas for and in Table 15.1. As far as and are concerned, might as well
be 1. Thus, when is constant, the location of the center of mass becomes a feature of the
object’s shape and not of the material of which it is made. In such cases, engineers may
call the center of mass the centroid of the shape. To find a centroid, we set equal to 1
and proceed to find and as before, by dividing first moments by masses.

EXAMPLE 6 Finding the Centroid of a Region

Find the centroid of the region in the first quadrant that is bounded above by the line 
and below by the parabola 

Solution We sketch the region and include enough detail to determine the limits of
integration (Figure 15.20). We then set equal to 1 and evaluate the appropriate formulas
from Table 15.1:
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FIGURE 15.20 The centroid of this
region is found in Example 6.
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From these values of and we find

The centroid is the point (1 2, 2 5).>>
x =

My

M
=

1>12

1>6 =
1
2
 and y =

Mx

M
=

1>15

1>6 =
2
5 .

My,M, Mx,
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