
1092 Chapter 15: Multiple Integrals

O

R

Q

 � � �

 � � �
�r

�r

�Ak

2�r

3�r

��

(rk, �k)

r � g1(�)

� � 2��

� � ��

� � �

� � 0

r � g2(�) r � a

FIGURE 15.21 The region is contained in the fan-
shaped region The partition of Q by circular arcs and rays
induces a partition of R.

Q: 0 … r … a, a … u … b.
R: g1sud … r … g2sud, a … u … b,

Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This section
shows how to accomplish the change and how to evaluate integrals over regions whose
boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we
began by cutting R into rectangles whose sides were parallel to the coordinate axes.
These were the natural shapes to use because their sides have either constant x-values or
constant y-values. In polar coordinates, the natural shape is a “polar rectangle” whose
sides have constant r- and 

Suppose that a function is defined over a region R that is bounded by the rays
and and by the continuous curves and Suppose also that

for every value of between and Then R lies in a fan-shaped
region Q defined by the inequalities and See Figure 15.21.a … u … b.0 … r … a

b.au0 … g1sud … g2sud … a
r = g2sud.r = g1sudu = bu = a

ƒsr, ud
u-values.

15.3

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered
at the origin, with radii where The rays are given by

where The arcs and rays partition Q into small patches called “polar
rectangles.”

We number the polar rectangles that lie inside R (the order does not matter), calling
their areas We let be any point in the polar rectangle whose
area is We then form the sum

Sn = a
n

k = 1
 ƒsrk, ukd ¢Ak.

¢Ak.
srk, ukd¢A1, ¢A2, Á , ¢An.

¢u = sb - ad>m¿.

u = a, u = a + ¢u, u = a + 2¢u, Á , u = a + m¿¢u = b,

¢r = a>m.¢r, 2¢r, Á , m¢r,
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If ƒ is continuous throughout R, this sum will approach a limit as we refine the grid to
make and go to zero. The limit is called the double integral of ƒ over R. In symbols,

To evaluate this limit, we first have to write the sum in a way that expresses in
terms of and For convenience we choose to be the average of the radii of the in-
ner and outer arcs bounding the kth polar rectangle The radius of the inner arc
bounding is then (Figure 15.22). The radius of the outer arc is

The area of a wedge-shaped sector of a circle having radius r and angle is

as can be seen by multiplying the area of the circle, by the fraction of the cir-
cle’s area contained in the wedge. So the areas of the circular sectors subtended by these
arcs at the origin are

Therefore,

Combining this result with the sum defining gives

As and the values of and approach zero, these sums converge to the double
integral

A version of Fubini’s Theorem says that the limit approached by these sums can be evalu-
ated by repeated single integrations with respect to r and as

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. To evaluate over a region R in polar coordinates, integrat-
ing first with respect to r and then with respect to take the following steps.u,

4R ƒsr, ud dA

6
R

 ƒsr, ud dA = L
u=b

u=a

 L
r = g2sud

r = g1sud
 ƒsr, ud r dr du.

u

lim
n: q

 Sn = 6
R

 ƒsr, ud r dr du.

¢u¢rn : q

Sn = a
n

k = 1
 ƒsrk, ukdrk ¢r ¢u.

Sn

 =

¢u
2

 c ark +
¢r
2
b2

- ark -
¢r
2
b2 d =

¢u
2

 s2rk ¢rd = rk ¢r ¢u.

 ¢Ak = area of large sector - area of small sector

Inner radius:
1
2

 ark -
¢r
2
b2

 ¢u

Outer radius:
1
2

 ark +
¢r
2
b2

 ¢u.

u>2p,pr2,

A =
1
2

 u # r2,

u

rk + s¢r>2d.
rk - s¢r>2d¢Ak

¢Ak.
rk¢u .¢r

¢AkSn

lim
n: q

 Sn = 6
R

 ƒsr, ud dA.

¢u¢r
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FIGURE 15.22 The observation that

leads to the formula ¢Ak = rk ¢r ¢u.

¢Ak = a area of

large sector
b - a area of

small sector
b
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1. Sketch: Sketch the region and label the bounding curves.

2. Find the r-limits of integration: Imagine a ray L from the origin cutting through R in
the direction of increasing r. Mark the r-values where L enters and leaves R. These are
the r-limits of integration. They usually depend on the angle that L makes with the
positive x-axis.

3. Find the of integration: Find the smallest and largest that bound R.
These are the of integration.

The integral is

EXAMPLE 1 Finding Limits of Integration

Find the limits of integration for integrating over the region R that lies inside the
cardioid and outside the circle 

Solution

1. We first sketch the region and label the bounding curves (Figure 15.23).

2. Next we find the r-limits of integration. A typical ray from the origin enters R where
and leaves where r = 1 + cos u.r = 1

r = 1.r = 1 + cos u

ƒsr, ud

6
R

 ƒsr, ud dA = L
u=p>2
u=p>4

 L
r = 2

r =22 csc u

 ƒsr, ud r dr du.
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3. Finally we find the of integration. The rays from the origin that intersect R run
from to The integral is

If is the constant function whose value is 1, then the integral of ƒ over R is the
area of R.

ƒsr, ud

L
p>2

-p>2
  L

1 + cos u

1
 ƒsr, ud r dr du.

u = p>2.u = -p>2 u-limits
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FIGURE 15.23 Finding the limits of
integration in polar coordinates for the
region in Example 1.

Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A = 6
R

 r dr du.

This formula for area is consistent with all earlier formulas, although we do not prove
this fact.

EXAMPLE 2 Finding Area in Polar Coordinates

Find the area enclosed by the lemniscate 

Solution We graph the lemniscate to determine the limits of integration (Figure 15.24)
and see from the symmetry of the region that the total area is 4 times the first-quadrant
portion.

Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral into a polar integral has
two steps. First substitute and and replace dx dy by in the
Cartesian integral. Then supply polar limits of integration for the boundary of R.

The Cartesian integral then becomes

where G denotes the region of integration in polar coordinates. This is like the substitu-
tion method in Chapter 5 except that there are now two variables to substitute for
instead of one. Notice that dx dy is not replaced by but by A more general
discussion of changes of variables (substitutions) in multiple integrals is given in
Section 15.7.

r dr du.dr du

6
R

 ƒsx, yd dx dy = 6
G

 ƒsr cos u, r sin ud r dr du,

r dr duy = r sin u,x = r cos u
4R ƒsx, yd dx dy

 = 4L
p>4

0
2 cos 2u du = 4 sin 2u d

0

p>4
= 4.

 A = 4L
p>4

0
 L
24 cos 2u

0
 r dr du = 4L
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FIGURE 15.24 To integrate over the
shaded region, we run r from 0 to

and from 0 to 
(Example 2).

p>4u24 cos 2u
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EXAMPLE 3 Changing Cartesian Integrals to Polar Integrals

Find the polar moment of inertia about the origin of a thin plate of density 
bounded by the quarter circle in the first quadrant.

Solution We sketch the plate to determine the limits of integration (Figure 15.25). In
Cartesian coordinates, the polar moment is the value of the integral

Integration with respect to y gives

an integral difficult to evaluate without tables.
Things go better if we change the original integral to polar coordinates. Substituting

and replacing dx dy by we get

Why is the polar coordinate transformation so effective here? One reason is that 
simplifies to Another is that the limits of integration become constants.

EXAMPLE 4 Evaluating Integrals Using Polar Coordinates

Evaluate

where R is the semicircular region bounded by the x-axis and the curve 
(Figure 15.26).

Solution In Cartesian coordinates, the integral in question is a nonelementary integral
and there is no direct way to integrate with respect to either x or y. Yet this integral
and others like it are important in mathematics—in statistics, for example—and we need
to find a way to evaluate it. Polar coordinates save the day. Substituting 

and replacing dy dx by enables us to evaluate the integral as

The r in the was just what we needed to integrate Without it, we would have
been unable to proceed.
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FIGURE 15.25 In polar coordinates, this
region is described by simple inequalities:

(Example 3).
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FIGURE 15.26 The semicircular region
in Example 4 is the region

0 … r … 1, 0 … u … p.
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