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EXERCISES 15.3

Evaluating Polar Integrals
In Exercises 1–16, change the Cartesian integral into an equivalent
polar integral. Then evaluate the polar integral.
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14.

15.

16.

Finding Area in Polar Coordinates
17. Find the area of the region cut from the first quadrant by the curve

18. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid and outside the circle 

19. One leaf of a rose Find the area enclosed by one leaf of the rose

20. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral The region looks like a
snail shell.

21. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid 

22. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids and r = 1 - cos u.r = 1 + cos u

r = 1 + sin u.

r = 4u>3, 0 … u … 2p.

r = 12 cos 3u.

r = 1.r = 1 + cos u

r = 2s2 - sin 2ud1>2.
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Masses and Moments
23. First moment of a plate Find the first moment about the x-axis

of a thin plate of constant density bounded below by
the x-axis and above by the cardioid 

24. Inertial and polar moments of a disk Find the moment of iner-
tia about the x-axis and the polar moment of inertia about the origin
of a thin disk bounded by the circle if the disk’s den-
sity at the point (x, y) is k a constant.

25. Mass of a plate Find the mass of a thin plate covering the
region outside the circle and inside the circle if
the plate’s density function is 

26. Polar moment of a cardioid overlapping circle Find the polar
moment of inertia about the origin of a thin plate covering the
region that lies inside the cardioid and outside the
circle if the plate’s density function is 

27. Centroid of a cardioid region Find the centroid of the region
enclosed by the cardioid 

28. Polar moment of a cardioid region Find the polar moment of
inertia about the origin of a thin plate enclosed by the cardioid

if the plate’s density function is 

Average Values
29. Average height of a hemisphere Find the average height of the

hemisphere above the disk 
in the xy-plane.

30. Average height of a cone Find the average height of the (single) 

cone above the disk in the xy-plane.

31. Average distance from interior of disk to center Find the av-
erage distance from a point P(x, y) in the disk to
the origin.

32. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk to the
boundary point A(1, 0).

Theory and Examples
33. Converting to a polar integral Integrate 

over the region 

34. Converting to a polar integral Integrate 
over the region 

35. Volume of noncircular right cylinder The region that lies in-
side the cardioid and outside the circle is
the base of a solid right cylinder. The top of the cylinder lies in the
plane Find the cylinder’s volume.z = x.
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36. Volume of noncircular right cylinder The region enclosed by
the lemniscate is the base of a solid right cylinder

whose top is bounded by the sphere Find the
cylinder’s volume.

37. Converting to polar integrals

a. The usual way to evaluate the improper integral
is first to calculate its square:

Evaluate the last integral using polar coordinates and solve
the resulting equation for I.

b. Evaluate

38. Converting to a polar integral Evaluate the integral

39. Existence Integrate the function 
over the disk Does the integral of ƒ(x, y) over
the disk exist? Give reasons for your answer.

40. Area formula in polar coordinates Use the double integral in
polar coordinates to derive the formula

for the area of the fan-shaped region between the origin and polar
curve 

41. Average distance to a given point inside a disk Let be a
point inside a circle of radius a and let h denote the distance from
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to the center of the circle. Let d denote the distance from an ar-
bitrary point P to Find the average value of over the region
enclosed by the circle. (Hint: Simplify your work by placing the
center of the circle at the origin and on the x-axis.)

42. Area Suppose that the area of a region in the polar coordinate
plane is

Sketch the region and find its area.

COMPUTER EXPLORATIONS

Coordinate Conversions
In Exercises 43–46, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part
(a) to its polar representation by solving its Cartesian
equation for r and 

c. Using the results in part (b), plot the polar region of
integration in the 

d. Change the integrand from Cartesian to polar coordinates.
Determine the limits of integration from your plot in part (c)
and evaluate the polar integral using the CAS integration
utility.
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