EXERCISES 15.3

Evaluating Polar Integrals

In Exercises 1–16, change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral.

1.
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} dy \, dx$$

2.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} dy \, dx$$

3.
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} (x^{2} + y^{2}) \, dx \, dy$$

4.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} (x^{2} + y^{2}) \, dy \, dx$$

5.
$$\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} dy \, dx$$

6.
$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} (x^{2} + y^{2}) \, dx \, dy$$

7.
$$\int_{0}^{6} \int_{0}^{9} x \, dx \, dy$$

8.
$$\int_{0}^{2} \int_{0}^{x} y \, dy \, dx$$

9.
$$\int_{-1}^{0} \int_{-\sqrt{1-x^{2}}}^{0} \frac{2}{1 + \sqrt{x^{2} + y^{2}}} \, dy \, dx$$

10.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{0} \frac{4\sqrt{x^{2} + y^{2}}}{1 + x^{2} + y^{2}} \, dx \, dy$$

11.
$$\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^{2}-y^{2}}} e^{\sqrt{x^{2}+y^{2}}} \, dx \, dy$$

12.
$$\int_{0}^{1} \int_{0}^{\sqrt{1-(x-1)^{2}}} \frac{x + y}{x^{2} + y^{2}} \, dy \, dx$$

13.
$$\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{0} \ln (x^{2} + y^{2} + 1) \, dx \, dy$$

15.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{(1 + x^{2} + y^{2})^{2}} \, dy \, dx$$

16.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{(1 + x^{2} + y^{2})^{2}} \, dy \, dx$$

Finding Area in Polar Coordinates

- 17. Find the area of the region cut from the first quadrant by the curve $r = 2(2 \sin 2\theta)^{1/2}$.
- **18. Cardioid overlapping a circle** Find the area of the region that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1.
- **19.** One leaf of a rose Find the area enclosed by one leaf of the rose $r = 12 \cos 3\theta$.
- **20. Snail shell** Find the area of the region enclosed by the positive *x*-axis and spiral $r = 4\theta/3$, $0 \le \theta \le 2\pi$. The region looks like a snail shell.
- **21. Cardioid in the first quadrant** Find the area of the region cut from the first quadrant by the cardioid $r = 1 + \sin \theta$.
- **22.** Overlapping cardioids Find the area of the region common to the interiors of the cardioids $r = 1 + \cos \theta$ and $r = 1 \cos \theta$.

Masses and Moments

- **23.** First moment of a plate Find the first moment about the *x*-axis of a thin plate of constant density $\delta(x, y) = 3$, bounded below by the *x*-axis and above by the cardioid $r = 1 \cos \theta$.
- 24. Inertial and polar moments of a disk Find the moment of inertia about the *x*-axis and the polar moment of inertia about the origin of a thin disk bounded by the circle $x^2 + y^2 = a^2$ if the disk's density at the point (x, y) is $\delta(x, y) = k(x^2 + y^2)$, *k* a constant.
- **25.** Mass of a plate Find the mass of a thin plate covering the region outside the circle r = 3 and inside the circle $r = 6 \sin \theta$ if the plate's density function is $\delta(x, y) = 1/r$.
- 26. Polar moment of a cardioid overlapping circle Find the polar moment of inertia about the origin of a thin plate covering the region that lies inside the cardioid $r = 1 \cos \theta$ and outside the circle r = 1 if the plate's density function is $\delta(x, y) = 1/r^2$.
- 27. Centroid of a cardioid region Find the centroid of the region enclosed by the cardioid $r = 1 + \cos \theta$.
- **28.** Polar moment of a cardioid region Find the polar moment of inertia about the origin of a thin plate enclosed by the cardioid $r = 1 + \cos \theta$ if the plate's density function is $\delta(x, y) = 1$.

Average Values

- **29.** Average height of a hemisphere Find the average height of the hemisphere $z = \sqrt{a^2 x^2 y^2}$ above the disk $x^2 + y^2 \le a^2$ in the *xy*-plane.
- **30.** Average height of a cone Find the average height of the (single) cone $z = \sqrt{x^2 + y^2}$ above the disk $x^2 + y^2 \le a^2$ in the *xy*-plane.
- **31.** Average distance from interior of disk to center Find the average distance from a point P(x, y) in the disk $x^2 + y^2 \le a^2$ to the origin.
- 32. Average distance squared from a point in a disk to a point in its boundary Find the average value of the square of the distance from the point P(x, y) in the disk $x^2 + y^2 \le 1$ to the boundary point A(1, 0).

Theory and Examples

- 33. Converting to a polar integral Integrate $f(x, y) = [\ln (x^2 + y^2)]/\sqrt{x^2 + y^2}$ over the region $1 \le x^2 + y^2 \le e$.
- 34. Converting to a polar integral Integrate $f(x, y) = [\ln (x^2 + y^2)]/(x^2 + y^2)$ over the region $1 \le x^2 + y^2 \le e^2$.
- **35.** Volume of noncircular right cylinder The region that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1 is the base of a solid right cylinder. The top of the cylinder lies in the plane z = x. Find the cylinder's volume.

36. Volume of noncircular right cylinder The region enclosed by the lemniscate $r^2 = 2 \cos 2\theta$ is the base of a solid right cylinder whose top is bounded by the sphere $z = \sqrt{2 - r^2}$. Find the cylinder's volume.

37. Converting to polar integrals

a. The usual way to evaluate the improper integral $I = \int_0^\infty e^{-x^2} dx$ is first to calculate its square:

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right) = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy.$$

Evaluate the last integral using polar coordinates and solve the resulting equation for *I*.

b. Evaluate

$$\lim_{x \to \infty} \operatorname{erf}(x) = \lim_{x \to \infty} \int_0^x \frac{2e^{-t^2}}{\sqrt{\pi}} dt.$$

38. Converting to a polar integral Evaluate the integral

$$\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} \, dx \, dy.$$

- **39. Existence** Integrate the function $f(x, y) = 1/(1 x^2 y^2)$ over the disk $x^2 + y^2 \le 3/4$. Does the integral of f(x, y) over the disk $x^2 + y^2 \le 1$ exist? Give reasons for your answer.
- **40.** Area formula in polar coordinates Use the double integral in polar coordinates to derive the formula

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta$$

for the area of the fan-shaped region between the origin and polar curve $r = f(\theta), \alpha \le \theta \le \beta$.

41. Average distance to a given point inside a disk Let P_0 be a point inside a circle of radius *a* and let *h* denote the distance from

 P_0 to the center of the circle. Let *d* denote the distance from an arbitrary point *P* to P_0 . Find the average value of d^2 over the region enclosed by the circle. (*Hint:* Simplify your work by placing the center of the circle at the origin and P_0 on the *x*-axis.)

42. Area Suppose that the area of a region in the polar coordinate plane is

$$A = \int_{\pi/4}^{3\pi/4} \int_{\csc\theta}^{2\sin\theta} r \, dr \, d\theta.$$

Sketch the region and find its area.

COMPUTER EXPLORATIONS

Coordinate Conversions

In Exercises 43–46, use a CAS to change the Cartesian integrals into an equivalent polar integral and evaluate the polar integral. Perform the following steps in each exercise.

- a. Plot the Cartesian region of integration in the xy-plane.
- b. Change each boundary curve of the Cartesian region in part
 (a) to its polar representation by solving its Cartesian equation for *r* and θ.
- **c.** Using the results in part (b), plot the polar region of integration in the *rθ*-plane.
- **d.** Change the integrand from Cartesian to polar coordinates. Determine the limits of integration from your plot in part (c) and evaluate the polar integral using the CAS integration utility.

43.
$$\int_{0}^{1} \int_{x}^{1} \frac{y}{x^{2} + y^{2}} dy dx$$
44.
$$\int_{0}^{1} \int_{0}^{x/2} \frac{x}{x^{2} + y^{2}} dy dx$$
45.
$$\int_{0}^{1} \int_{-y/3}^{y/3} \frac{y}{\sqrt{x^{2} + y^{2}}} dx dy$$
46.
$$\int_{0}^{1} \int_{y}^{2-y} \sqrt{x + y} dx dy$$