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Masses and Moments in Three Dimensions

This section shows how to calculate the masses and moments of three-dimensional objects
in Cartesian coordinates. The formulas are similar to those for two-dimensional objects.
For calculations in spherical and cylindrical coordinates, see Section 15.6.

Masses and Moments

If is the density of an object occupying a region D in space (mass per unit volume),
the integral of over D gives the mass of the object. To see why, imagine partitioning the
object into n mass elements like the one in Figure 15.32. The object’s mass is the limit

We now derive a formula for the moment of inertia. If r(x, y, z) is the distance from the
point (x, y, z) in D to a line L, then the moment of inertia of the mass 

about the line L (shown in Figure 15.32) is approximately 
The moment of inertia about L of the entire object is

If L is the x-axis, then (Figure 15.33) and
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FIGURE 15.32 To define an object’s
mass and moment of inertia about a line,
we first imagine it to be partitioned into a
finite number of mass elements ¢mk.
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Similarly, if L is the y-axis or z-axis we have

Likewise, we can obtain the first moments about the coordinate planes. For example,

gives the first moment about the yz-plane.
The mass and moment formulas in space analogous to those discussed for planar re-

gions in Section 15.2 are summarized in Table 15.3.
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FIGURE 15.33 Distances from dV to the
coordinate planes and axes.
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TABLE 15.3 Mass and moment formulas for solid objects in space

Mass:

First moments about the coordinate planes:

Center of mass:

Moments of inertia (second moments) about the coordinate axes:

Moments of inertia about a line L:

Radius of gyration about a line L:

RL = 2IL>M
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EXAMPLE 1 Finding the Center of Mass of a Solid in Space

Find the center of mass of a solid of constant density bounded below by the disk
in the plane and above by the paraboloid 

(Figure 15.34).
z = 4 - x2

- y2z = 0R: x2
+ y2

… 4
d
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Solution By symmetry To find we first calculate

A similar calculation gives

Therefore and the center of mass is  

When the density of a solid object is constant (as in Example 1), the center of mass is called
the centroid of the object (as was the case for two-dimensional shapes in Section 15.2).

EXAMPLE 2 Finding the Moments of Inertia About the Coordinate Axes

Find for the rectangular solid of constant density shown in Figure 15.35.

Solution The formula for gives

We can avoid some of the work of integration by observing that is an even
function of x, y, and z. The rectangular solid consists of eight symmetric pieces, one in
each octant. We can evaluate the integral on one of these pieces and then multiply by 8 to
get the total value.

Similarly,
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FIGURE 15.34 Finding the center of
mass of a solid (Example 1).
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FIGURE 15.35 Finding and for
the block shown here. The origin lies at the
center of the block (Example 2).
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