
1112 Chapter 15: Multiple Integrals

EXERCISES 15.5

Constant Density
The solids in Exercises 1–12 all have constant density 

1. (Example 1 Revisited.) Evaluate the integral for in Table 15.3
directly to show that the shortcut in Example 2 gives the same an-
swer. Use the results in Example 2 to find the radius of gyration
of the rectangular solid about each coordinate axis.

2. Moments of inertia The coordinate axes in the figure run
through the centroid of a solid wedge parallel to the labeled
edges. Find and if and 

3. Moments of inertia Find the moments of inertia of the rectan-
gular solid shown here with respect to its edges by calculating

and 

4. a. Centroid and moments of inertia Find the centroid and the
moments of inertia and of the tetrahedron whose ver-
tices are the points (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

b. Radius of gyration Find the radius of gyration of the
tetrahedron about the x-axis. Compare it with the distance
from the centroid to the x-axis.

5. Center of mass and moments of inertia A solid “trough” of
constant density is bounded below by the surface above
by the plane and on the ends by the planes and

Find the center of mass and the moments of inertia with
respect to the three axes.

6. Center of mass A solid of constant density is bounded below
by the plane on the sides by the elliptical cylinder

and above by the plane (see the ac-
companying figure).
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a. Find and 

b. Evaluate the integral

using integral tables to carry out the final integration with
respect to x. Then divide by M to verify that 

7. a. Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid 
and above by the plane 

b. Find the plane that divides the solid into two parts of
equal volume. This plane does not pass through the center of
mass.

8. Moments and radii of gyration A solid cube, 2 units on a side,
is bounded by the planes and 
Find the center of mass and the moments of inertia and radii of
gyration about the coordinate axes.

9. Moment of inertia and radius of gyration about a line A
wedge like the one in Exercise 2 has and 
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line

is Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

10. Moment of inertia and radius of gyration about a line A
wedge like the one in Exercise 2 has and 
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line

is Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

11. Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has and 
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line

is Then find the moment of
inertia and radius of gyration of the solid about L.
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12. Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has and 
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line

is Then find the moment
of inertia and radius of gyration of the solid about L.

Variable Density
In Exercises 13 and 14, find

a. the mass of the solid.

b. the center of mass.

13. A solid region in the first octant is bounded by the coordinate
planes and the plane The density of the solid is

14. A solid in the first octant is bounded by the planes and
and by the surfaces and (see the

accompanying figure). Its density function is a
constant.

In Exercises 15 and 16, find

a. the mass of the solid.

b. the center of mass.

c. the moments of inertia about the coordinate axes.

d. the radii of gyration about the coordinate axes.

15. A solid cube in the first octant is bounded by the coordinate
planes and by the planes and The density of
the cube is 

16. A wedge like the one in Exercise 2 has dimensions 
and The density is Notice that if the
density is constant, the center of mass will be (0, 0, 0).

17. Mass Find the mass of the solid bounded by the planes

and the surface The
density of the solid is dsx, y, zd = 2y + 5.
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18. Mass Find the mass of the solid region bounded by the para-

bolic surfaces and if the
density of the solid is 

Work
In Exercises 19 and 20, calculate the following.

a. The amount of work done by (constant) gravity g in moving the
liquid filling in the container to the xy-plane. (Hint: Partition
the liquid into small volume elements and find the work
done (approximately) by gravity on each element. Summation
and passage to the limit gives a triple integral to evaluate.)

b. The work done by gravity in moving the center of mass down
to the xy-plane.

19. The container is a cubical box in the first octant bounded by the
coordinate planes and the planes and The
density of the liquid filling the box is 
(see Exercise 15).

20. The container is in the shape of the region bounded by
and The density of the liquid

filling the region is k a constant (see
Exercise 14).

The Parallel Axis Theorem
The Parallel Axis Theorem (Exercises 15.2) holds in three dimensions
as well as in two. Let be a line through the center of mass of a
body of mass m and let L be a parallel line h units away from The
Parallel Axis Theorem says that the moments of inertia and of
the body about and L satisfy the equation

(1)

As in the two-dimensional case, the theorem gives a quick way to
calculate one moment when the other moment and the mass are
known.

21. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula then tell
you?)
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b. To prove the Parallel Axis Theorem, place the body with its
center of mass at the origin, with the line along the z-axis
and the line L perpendicular to the xy-plane at the point 
(h, 0, 0). Let D be the region of space occupied by the body.
Then, in the notation of the figure,

Expand the integrand in this integral and complete the proof.

22. The moment of inertia about a diameter of a solid sphere of constant
density and radius a is where m is the mass of the sphere.
Find the moment of inertia about a line tangent to the sphere.

23. The moment of inertia of the solid in Exercise 3 about the z-axis
is 

a. Use Equation (1) to find the moment of inertia and radius of
gyration of the solid about the line parallel to the z-axis
through the solid’s center of mass.

b. Use Equation (1) and the result in part (a) to find the moment
of inertia and radius of gyration of the solid about the line

24. If and the moment of inertia of the solid
wedge in Exercise 2 about the x-axis is Find the mo-
ment of inertia of the wedge about the line (the
edge of the wedge’s narrow end).

Pappus’s Formula
Pappus’s formula (Exercises 15.2) holds in three dimensions as well as
in two. Suppose that bodies and of mass and respec-
tively, occupy nonoverlapping regions in space and that and are
the vectors from the origin to the bodies’ respective centers of mass.
Then the center of mass of the union of the two bodies is
determined by the vector

As before, this formula is called Pappus’s formula. As in the two-
dimensional case, the formula generalizes to

for n bodies.
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25. Derive Pappus’s formula. (Hint: Sketch and as nonoverlap-
ping regions in the first octant and label their centers of mass

and Express the moments of about
the coordinate planes in terms of the masses and and the
coordinates of these centers.)

26. The accompanying figure shows a solid made from three rectan-
gular solids of constant density Use Pappus’s formula to
find the center of mass of

a. b.

c. d.

27. a. Suppose that a solid right circular cone C of base radius a and
altitude h is constructed on the circular base of a solid hemi-
sphere S of radius a so that the union of the two solids resem-
bles an ice cream cone. The centroid of a solid cone lies one-
fourth of the way from the base toward the vertex. The
centroid of a solid hemisphere lies three-eighths of the way
from the base to the top. What relation must hold between h
and a to place the centroid of in the common base of the
two solids?

b. If you have not already done so, answer the analogous
question about a triangle and a semicircle (Section 15.2,
Exercise 55). The answers are not the same.

28. A solid pyramid P with height h and four congruent sides is built
with its base as one face of a solid cube C whose edges have
length s. The centroid of a solid pyramid lies one-fourth of the
way from the base toward the vertex. What relation must hold
between h and s to place the centroid of in the base of the
pyramid? Compare your answer with the answer to Exercise 27.
Also compare it with the answer to Exercise 56 in Section 15.2.
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