
1114 Chapter 15: Multiple Integrals

Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates,
which are introduced in this section. The procedure for transforming to these coordinates
and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
nates in the plane studied in Section 15.3.

15.6
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Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane
with the usual z-axis. This assigns to every point in space one or more coordinate triples of
the form as shown in Figure 15.36.sr, u, zd,
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FIGURE 15.36 The cylindrical
coordinates of a point in space are r, 
and z.
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DEFINITION Cylindrical Coordinates
Cylindrical coordinates represent a point P in space by ordered triples 
in which

1. r and are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.

u

sr, u, zd

The values of x, y, r, and in rectangular and cylindrical coordinates are related by the
usual equations.

u

Equations Relating Rectangular (x, y, z) and Cylindrical Coordinates

 r2
= x2

+ y2, tan u = y>x
 x = r cos u, y = r sin u, z = z,

sr, U, zd

In cylindrical coordinates, the equation describes not just a circle in the xy-
plane but an entire cylinder about the z-axis (Figure 15.37). The z-axis is given by 
The equation describes the plane that contains the z-axis and makes an angle 
with the positive x-axis. And, just as in rectangular coordinates, the equation de-
scribes a plane perpendicular to the z-axis.
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FIGURE 15.37 Constant-coordinate equations in
cylindrical coordinates yield cylinders and planes.
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Cylindrical coordinates are good for describing cylinders whose axes run along the
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces
like these have equations of constant coordinate value:

When computing triple integrals over a region D in cylindrical coordinates, we parti-
tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the
kth cylindrical wedge, and z change by and and the largest of these
numbers among all the cylindrical wedges is called the norm of the partition. We define
the triple integral as a limit of Riemann sums using these wedges. The volume of such a
cylindrical wedge is obtained by taking the area of its base in the and
multiplying by the height (Figure 15.38).

For a point in the center of the kth wedge, we calculated in polar coordi-
nates that So and a Riemann sum for ƒ over D
has the form

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann
sums with partitions whose norms approach zero

.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the
following example.

EXAMPLE 1 Finding Limits of Integration in Cylindrical Coordinates

Find the limits of integration in cylindrical coordinates for integrating a function 
over the region D bounded below by the plane laterally by the circular cylinder

and above by the paraboloid 

Solution The base of D is also the region’s projection R on the xy-plane. The boundary
of R is the circle Its polar coordinate equation is

The region is sketched in Figure 15.39.
We find the limits of integration, starting with the z-limits. A line M through a

typical point in R parallel to the z-axis enters D at and leaves at

Next we find the r-limits of integration. A ray L through from the origin enters
R at and leaves at r = 2 sin u.r = 0

sr, ud
z = x2

+ y2
= r2.

z = 0sr, ud

 r = 2 sin u.

 r2
- 2r sin u = 0

 x2
+ y2

- 2y + 1 = 1

 x2
+ s y - 1d2

= 1

x2
+ s y - 1d2

= 1.

z = x2
+ y2.x2

+ s y - 1d2
= 1,

z = 0,
ƒsr, u, zd

lim
n: q

 Sn = 9
D

 ƒ dV = 9
D

 ƒ dz r dr du

Sn = a
n

k = 1
 ƒsrk, uk, zkd ¢zk rk ¢rk ¢uk.

¢Vk = ¢zk rk ¢rk ¢uk¢Ak = rk ¢rk ¢uk.
srk, uk, zkd

¢z
ru-plane¢Ak¢Vk

¢zk,¢rk, ¢uk,r, u

 z = 2.

 u =
p
3

.

 r = 4.
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Cylinder, radius 4, axis the z-axis
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FIGURE 15.38 In cylindrical coordinates
the volume of the wedge is approximated
by the product ¢V = ¢z r ¢r ¢u.
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FIGURE 15.39 Finding the limits of
integration for evaluating an integral in
cylindrical coordinates (Example 1).
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Finally we find the of integration. As L sweeps across R, the angle it makes
with the positive x-axis runs from to The integral is

Example 1 illustrates a good procedure for finding limits of integration in cylindrical
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

over a region D in space in cylindrical coordinates, integrating first with respect to z, then
with respect to r, and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces and curves that bound D and R.

2. Find the z-limits of integration. Draw a line M through a typical point of R par-
allel to the z-axis. As z increases, M enters D at and leaves at

These are the z-limits of integration.

z

y

x

D

R

M

r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

(r, �)

z = g2sr, ud.
z = g1sr, ud

sr, ud

z

y

x

D

R

r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

u,

9
D

 ƒsr, u, zd dV

9
D

 ƒsr, u, zd dV = L
p

0
 L

2 sin u

0
 L

r2

0
 ƒsr, u, zd dz r dr du.

u = p.u = 0
uu-limits
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3. Find the r-limits of integration. Draw a ray L through from the origin. The ray
enters R at and leaves at These are the r-limits of integration.

4. Find the of integration. As L sweeps across R, the angle it makes with the
positive x-axis runs from to These are the of integration. The
integral is

EXAMPLE 2 Finding a Centroid

Find the centroid of the solid enclosed by the cylinder bounded
above by the paraboloid and bounded below by the xy-plane.

Solution We sketch the solid, bounded above by the paraboloid and below by
the plane (Figure 15.40). Its base R is the disk in the xy-plane.

The solid’s centroid lies on its axis of symmetry, here the z-axis. This makes
To find we divide the first moment by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with
the four basic steps. We completed our initial sketch. The remaining steps give the limits
of integration.

The z-limits. A line M through a typical point in the base parallel to the z-axis
enters the solid at and leaves at 

The r-limits. A ray L through from the origin enters R at and leaves at

The As L sweeps over the base like a clock hand, the angle it makes with
the positive x-axis runs from to The value of is

 = L
2p

0
 L

2

0
 
r5

2
 dr du = L

2p

0
 c r6

12
d

0

2

 du = L
2p

0
 
16
3

 du =

32p
3

.

 Mxy = L
2p

0
 L

2

0
 L

r2

0
 z dz r dr du = L

2p

0
 L

2

0
 cz2

2
d

0

r2

 r dr du

Mxyu = 2p.u = 0
uu-limits.

r = 2.
r = 0sr, ud

z = r2.z = 0
sr, ud

Mxyz ,x = y = 0 .
sx, y, zd

0 … r … 2z = 0
z = r2

z = x2
+ y2,

x2
+ y2

= 4,sd = 1d

9
D

 ƒsr, u, zd dV = L
u=b

u=a

 L
r = h2sud

r = h1sud
 L

z = g2sr, ud

z = g1sr, ud
 ƒsr, u, zd dz r dr du.

u-limitsu = b.u = a

uu-limits

z

y

x

D

R

M

L

� � � � � �
r � h1(�)

r � h2(�)

z � g1(r, �)

z � g2(r, �)

(r, �)

�

� �

r = h2sud.r = h1sud
sr, ud
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FIGURE 15.40 Example 2 shows how to
find the centroid of this solid.
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The value of M is

Therefore,

and the centroid is (0, 0, 4 3). Notice that the centroid lies outside the solid.

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in
Figure 15.41. The first coordinate, is the point’s distance from the origin.
Unlike r, the variable is never negative. The second coordinate, is the angle 
makes with the positive z-axis. It is required to lie in the interval The third coordi-
nate is the angle as measured in cylindrical coordinates.u

[0, p].
OP§f,r

r = ƒ OP§ ƒ ,

>
z =

Mxy

M
=

32p
3

 
1

8p
=

4
3

,

 = L
2p

0
 L

2

0
 r3 dr du = L

2p

0
 cr4

4
d

0

2

 du = L
2p

0
4 du = 8p.

M = L
2p

0
 L

2

0
 L

r2

0
 dz r dr du = L

2p

0
 L

2

0
cz d

0

r2

 r dr du
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FIGURE 15.41 The spherical coordinates
and and their relation to x, y, z, and r.ur, f,

DEFINITION Spherical Coordinates
Spherical coordinates represent a point P in space by ordered triples in
which

1. is the distance from P to the origin.

2. is the angle makes with the positive z-axis 

3. is the angle from cylindrical coordinates.u

s0 … f … pd.OP§f

r

sr, f, ud

On maps of the Earth, is related to the meridian of a point on the Earth and to its
latitude, while is related to elevation above the Earth’s surface.

The equation describes the sphere of radius a centered at the origin (Figure 15.42).
The equation describes a single cone whose vertex lies at the origin and whose
axis lies along the z-axis. (We broaden our interpretation to include the xy-plane as the
cone ) If is greater than the cone opens downward. The equa-
tion describes the half-plane that contains the z-axis and makes an angle with
the positive x-axis.

u0u = u0

f = f0p>2,f0f = p>2.

f = f0

r = a
r

fu

� � �0, whereas �
and � vary

� � a, whereas �
and � vary

y

z

x

�0

�0

P(a, �0, �0)

� � �0, whereas �
and � vary

FIGURE 15.42 Constant-coordinate
equations in spherical coordinates yield
spheres, single cones, and half-planes.

Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

(1)

r = 2x 2
+ y 2

+ z2
= 2r 2

+ z 2.

 z = r cos f, y = r sin u = r sin f sin u,

 r = r sin f, x = r cos u = r sin f cos u,
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EXAMPLE 3 Converting Cartesian to Spherical

Find a spherical coordinate equation for the sphere 

Solution We use Equations (1) to substitute for x, y, and z:

1

1

See Figure 15.43.

EXAMPLE 4 Converting Cartesian to Spherical

Find a spherical coordinate equation for the cone (Figure 15.44).

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the
first quadrant of the yz-plane along the line The angle between the cone and the
positive z-axis is therefore radians. The cone consists of the points whose spherical
coordinates have equal to so its equation is 

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain
the same result:

Spherical coordinates are good for describing spheres centered at the origin, half-planes
hinged along the z-axis, and cones whose vertices lie at the origin and whose axes lie along
the z-axis. Surfaces like these have equations of constant coordinate value:

When computing triple integrals over a region D in spherical coordinates, we partition
the region into n spherical wedges. The size of the kth spherical wedge, which contains a
point is given by changes by and in and Such a spher-
ical wedge has one edge a circular arc of length another edge a circular arc ofrk ¢fk,

f.r, u,¢fk¢rk, ¢uk,srk, fk, ukd,

 u =
p
3

.

 f =
p
3

 r = 4

 f =

p
4

.

 cos f = sin f

 r cos f = r sin f

 r cos f = 2r2 sin2 f

 z = 2x2
+ y2

f = p>4.p>4,f

p>4 z = y.

z = 2x2
+ y2

 r = 2 cos f .

 r2
= 2r cos f

(''')'''*

 r2ssin2 f + cos2 fd = 2r cos f

(''')'''*

 r2 sin2 fscos2 u + sin2 ud + r2 cos2 f - 2r cos f + 1 = 1

 r2 sin2 f cos2 u + r2 sin2 f sin2 u + sr cos f - 1d2
= 1

 x2
+ y2

+ sz - 1d2
= 1

x2
+ y2

+ sz - 1d2
= 1.
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FIGURE 15.43 The sphere in Example 3.
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FIGURE 15.44 The cone in Example 4. Example 3

r Ú 0, sin f Ú 0

0 … f … p

Sphere, radius 4, center at origin

Cone opening up from the origin, making an
angle of radians with the positive z-axisp>3
Half-plane, hinged along the z-axis, making an
angle of radians with the positive x-axisp>3

Equations (1)
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length and thickness The spherical wedge closely approximates a cube
of these dimensions when and are all small (Figure 15.45). It can be shown
that the volume of this spherical wedge is for

a point chosen inside the wedge.
The corresponding Riemann sum for a function is

As the norm of a partition approaches zero, and the spherical wedges get smaller, the
Riemann sums have a limit when F is continuous:

In spherical coordinates, we have

To evaluate integrals in spherical coordinates, we usually integrate first with respect to 
The procedure for finding the limits of integration is shown below. We restrict our atten-
tion to integrating over domains that are solids of revolution about the z-axis (or portions
thereof) and for which the limits for and are constant.

How to Integrate in Spherical Coordinates

To evaluate

over a region D in space in spherical coordinates, integrating first with respect to then
with respect to and finally with respect to take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

x

y

z

R

D

� � g2(�, �)

� � g1(�, �)

u,f,
r,

9
D

 ƒsr, f, ud dV

fu

r.

dV = r2 sin f dr df du.

lim
n: q

 Sn = 9
D

 Fsr, f, ud dV = 9
D

 Fsr, f, ud r2 sin f dr df du.

Sn = a
n

k = 1
 Fsrk, fk, ukd rk

2 sin fk ¢rk ¢fk ¢uk .

Fsr, f, ud
srk, fk, ukd

¢Vk = rk
2 sin fk ¢rk ¢fk ¢uk¢Vk

¢fk¢rk, ¢uk,
¢rk.rk sin fk ¢uk,
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FIGURE 15.45 In spherical coordinates

 = r2 sin f dr df du.

 dV = dr # r df # r sin f du
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2. Find the of integration. Draw a ray M from the origin through D making an
angle with the positive z-axis. Also draw the projection of M on the xy-plane (call
the projection L). The ray L makes an angle with the positive x-axis. As increases,
M enters D at and leaves at These are the of
integration.

3. Find the of integration. For any given the angle that M makes with the
z-axis runs from to These are the of integration.

4. Find the of integration. The ray L sweeps over R as runs from to These
are the of integration. The integral is

EXAMPLE 5 Finding a Volume in Spherical Coordinates

Find the volume of the “ice cream cone” D cut from the solid sphere by the cone

Solution The volume is the integral of 

over D.
To find the limits of integration for evaluating the integral, we begin by sketching D

and its projection R on the xy-plane (Figure 15.46).
The of integration. We draw a ray M from the origin through D making an an-

gle with the positive z-axis. We also draw L, the projection of M on the xy-plane, along
with the angle that L makes with the positive x-axis. Ray M enters D at and leaves
at 

The of integration. The cone makes an angle of with the posi-
tive z-axis. For any given the angle can run from to f = p>3.f = 0fu,

p>3f = p>3f-limits
r = 1.

r = 0u

f

r-limits

ƒsr, f, ud = 1V = 7D
r2 sin f dr df du,

f = p>3.
r … 1

9
D

 ƒsr, f, ud dV = L
u=b

u=a

 L
f=fmax

f=fmin

 L
r= g2sf, ud

r= g1sf, ud
 ƒsr, f, ud r2 sin f dr df du.

u-limits
b.auu-limits

f -limitsf = fmax.f = fmin

fu,f-limits

x

y

z

R

D

L

θ

M

� � g2(�, �)

� � g1(�, �)

� � �
� � �

�max

�min
�

r-limitsr = g2sf, ud.r = g1sf, ud
ru

f

r-limits
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FIGURE 15.46 The ice cream cone in
Example 5.
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The of integration. The ray L sweeps over R as runs from 0 to The
volume is

EXAMPLE 6 Finding a Moment of Inertia

A solid of constant density occupies the region D in Example 5. Find the solid’s
moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

In spherical coordinates, 
Hence,

For the region in Example 5, this becomes

 =
1
5 L

2p

0
 a- 1

2
+ 1 +

1
24

-
1
3
b  du =

1
5 L

2p

0
 

5
24

 du =
1
24

 s2pd =

p
12

.

 =
1
5 L

2p

0
 L
p>3

0
s1 - cos2 fd sin f df du =

1
5 L

2p

0
 c-cos f +

cos3 f

3
d

0

p>3
 du

 Iz = L
2p

0
 L
p>3

0
 L

1

0
r4 sin3 f dr df du = L

2p

0
 L
p>3

0
 cr5

5 d0
1

 sin3 f df du

Iz = 9sr2 sin2 fd r2 sin f dr df du = 9r4 sin3 f dr df du .

x2
+ y2

= sr sin f cos ud2
+ sr sin f sin ud2

= r2 sin2 f .

Iz = 9sx2
+ y2d dV .

d = 1

 = L
2p

0
 c- 1

3
 cos f d

0

p>3
 du = L

2p

0
 a- 1

6
+

1
3
b  du =

1
6

 s2pd =
p
3

.

 = L
2p

0
 L
p>3

0
 cr3

3
d

0

1

 sin f df du = L
2p

0
 L
p>3

0
 
1
3

 sin f df du

 V = 9
D

r2 sin f dr df du = L
2p

0
 L
p>3

0
 L

1

0
r2 sin f dr df du

2p.uu-limits
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Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO

RECTANGULAR RECTANGULAR CYLINDRICAL

Corresponding formulas for dV in triple integrals:

 = r2 sin f dr df du

 = dz r dr du

 dV = dx dy dz

 u = u z = r cos f z = z

 z = r cos f y = r sin f sin u y = r sin u

 r = r sin f x = r sin f cos u x = r cos u
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In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.
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