
1124 Chapter 15: Multiple Integrals

EXERCISES 15.6

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1.

2.

3.

4.

5.

6.

Changing Order of Integration in
Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred or-
ders of integration for cylindrical coordinates, but other orders usually
work well and are occasionally easier to evaluate. Evaluate the inte-
grals in Exercises 7–10.

7.

8.

9.

10.

11. Let D be the region bounded below by the plane above
by the sphere and on the sides by the cylin-
der Set up the triple integrals in cylindrical coor-
dinates that give the volume of D using the following orders of
integration.
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12. Let D be the region bounded below by the cone 
and above by the paraboloid Set up the triple
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

a.

b.

c.

13. Give the limits of integration for evaluating the integral

as an iterated integral over the region that is bounded below by the
plane on the side by the cylinder and on top by
the paraboloid 

14. Convert the integral

to an equivalent integral in cylindrical coordinates and evaluate
the result.

Finding Iterated Integrals in Cylindrical
Coordinates
In Exercises 15–20, set up the iterated integral for evaluating

over the given region D.

15. D is the right circular cylinder whose base is the circle 
in the xy-plane and whose top lies in the plane 

16. D is the right circular cylinder whose base is the circle
and whose top lies in the plane z = 5 - x.r = 3 cos u
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17. D is the solid right cylinder whose base is the region in the xy-
plane that lies inside the cardioid and outside the
circle and whose top lies in the plane 

18. D is the solid right cylinder whose base is the region between the
circles and and whose top lies in the plane

19. D is the prism whose base is the triangle in the xy-plane bounded
by the x-axis and the lines and and whose top lies in
the plane 

y
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2
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20. D is the prism whose base is the triangle in the xy-plane bounded
by the y-axis and the lines and and whose top lies in
the plane 

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.

22.

23.

24.

25.

26.

Changing Order of Integration
in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders are possible and occa-
sionally easier to evaluate. Evaluate the integrals in Exercises 27–30.

27.

28.

29.

30.

31. Let D be the region in Exercise 11. Set up the triple integrals in
spherical coordinates that give the volume of D using the follow-
ing orders of integration.
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32. Let D be the region bounded below by the cone 
and above by the plane Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following
orders of integration.

a. b.

Finding Iterated Integrals in Spherical
Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the in-
tegral that calculates the volume of the given solid and (b) then evalu-
ate the integral.

33. The solid between the sphere and the hemisphere

34. The solid bounded below by the hemisphere and
above by the cardioid of revolution 

35. The solid enclosed by the cardioid of revolution 

36. The upper portion cut from the solid in Exercise 35 by the xy-
plane

37. The solid bounded below by the sphere and above by
the cone 

38. The solid bounded below by the xy-plane, on the sides by the
sphere and above by the cone f = p>3r = 2,

z
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df dr dudr df du
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z = 2x2

+ y2

Rectangular, Cylindrical, and Spherical
Coordinates
39. Set up triple integrals for the volume of the sphere in

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone and above by the sphere Express the
volume of D as an iterated triple integral in (a) cylindrical and
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by eval-
uating one of the three triple integrals.

42. Express the moment of inertia of the solid hemisphere
as an iterated integral in (a) cylindri-

cal and (b) spherical coordinates. Then (c) find 

Volumes
Find the volumes of the solids in Exercises 43–48.
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47. 48.

49. Sphere and cones Find the volume of the portion of the solid
sphere that lies between the cones and

50. Sphere and half-planes Find the volume of the region cut from
the solid sphere by the half-planes and in
the first octant.

51. Sphere and plane Find the volume of the smaller region cut
from the solid sphere by the plane 

52. Cone and planes Find the volume of the solid enclosed by the
cone between the planes and 

53. Cylinder and paraboloid Find the volume of the region
bounded below by the plane laterally by the cylinder

and above by the paraboloid 

54. Cylinder and paraboloids Find the volume of the region
bounded below by the paraboloid laterally by the
cylinder and above by the paraboloid 

55. Cylinder and cones Find the volume of the solid cut from the
thick-walled cylinder by the cones 

56. Sphere and cylinder Find the volume of the region that lies in-
side the sphere and outside the cylinder

57. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and 

58. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and

59. Region trapped by paraboloids Find the volume of the region
bounded above by the paraboloid and below by
the paraboloid 

60. Paraboloid and cylinder Find the volume of the region
bounded above by the paraboloid below by the
xy-plane, and lying outside the cylinder 

61. Cylinder and sphere Find the volume of the region cut from
the solid cylinder by the sphere 

62. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid z = x2

+ y2.
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Average Values
63. Find the average value of the function over the re-

gion bounded by the cylinder between the planes 
and 

64. Find the average value of the function over the solid
ball bounded by the sphere (This is the sphere

)

65. Find the average value of the function over the
solid ball 

66. Find the average value of the function over
the solid upper ball 

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below

by the plane above by the cone and on the
sides by the cylinder Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that

is bounded above by the cone below by the plane
and on the sides by the cylinder and the

planes and 

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the
sphere and below by the cone 

71. Centroid Find the centroid of the region that is bounded above
by the surface on the sides by the cylinder and
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball
by the half-planes and

73. Inertia and radius of gyration Find the moment of inertia and
radius of gyration about the z-axis of a thick-walled right circular
cylinder bounded on the inside by the cylinder on the out-
side by the cylinder and on the top and bottom by the
planes and (Take )

74. Moments of inertia of solid circular cylinder Find the mo-
ment of inertia of a solid circular cylinder of radius 1 and
height 2 (a) about the axis of the cylinder and (b) about a line
through the centroid perpendicular to the axis of the cylinder.
(Take )

75. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius 1 and height 1 about an axis
through the vertex parallel to the base. (Take )

76. Moment of inertia of solid sphere Find the moment of inertia
of a solid sphere of radius a about a diameter. (Take )

77. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius a and height h about its axis.
(Hint: Place the cone with its vertex at the origin and its axis
along the z-axis.)

78. Variable density A solid is bounded on the top by the parabo-
loid on the bottom by the plane and on the sides byz = 0,z = r2,

d = 1.

d = 1.

d = 1.
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r … 1, 0 … f … p>2.
ƒsr, f, ud = r cos f
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ƒsr, f, ud = r

x2
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r2
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the cylinder Find the center of mass and the moment of
inertia and radius of gyration about the z-axis if the density is

a.

b.

79. Variable density A solid is bounded below by the cone
and above by the plane Find the center of

mass and the moment of inertia and radius of gyration about the
z-axis if the density is

a.

b.

80. Variable density A solid ball is bounded by the sphere 
Find the moment of inertia and radius of gyration about the z-axis
if the density is

a.

b.

81. Centroid of solid semiellipsoid Show that the centroid of the
solid semiellipsoid of revolution 
lies on the z-axis three-eighths of the way from the base to the top.
The special case gives a solid hemisphere. Thus, the cen-
troid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

82. Centroid of solid cone Show that the centroid of a solid right
circular cone is one-fourth of the way from the base to the vertex.
(In general, the centroid of a solid cone or pyramid is one-fourth
of the way from the centroid of the base to the vertex.)

83. Variable density A solid right circular cylinder is bounded by
the cylinder and the planes and Find
the center of mass and the moment of inertia and radius of gyra-
tion about the z-axis if the density is dsr, u, zd = z + 1.

z = h, h 7 0.z = 0r = a

h = a

sr2>a2d + sz2>h2d … 1, z Ú 0,

dsr, f, ud = r = r sin f.

dsr, f, ud = r2

r = a.

dsr, u, zd = z2.

dsr, u, zd = z

z = 1.z = 2x2
+ y2

dsr, u, zd = r.

dsr, u, zd = z

r = 1. 84. Mass of planet’s atmosphere A spherical planet of radius R
has an atmosphere whose density is where h is the
altitude above the surface of the planet, is the density at sea
level, and c is a positive constant. Find the mass of the planet’s
atmosphere.

85. Density of center of a planet A planet is in the shape of a
sphere of radius R and total mass M with spherically symmetric
density distribution that increases linearly as one approaches its
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

Theory and Examples
86. Vertical circular cylinders in spherical coordinates Find an

equation of the form for the cylinder 

87. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations
of the form in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations
of the form 

88. (Continuation of Exercise 87.) Find an equation of the form
in cylindrical coordinates for the plane 

89. Symmetry What symmetry will you find in a surface that has
an equation of the form in cylindrical coordinates? Give
reasons for your answer.

90. Symmetry What symmetry will you find in a surface that has
an equation of the form in spherical coordinates? Give
reasons for your answer.

r = ƒsfd

r = ƒszd

c Z 0.
ax + by = c,r = ƒsud

r = b csc u.

r = a sec u

x2
+ y2

= a2.r = ƒsfd

m0

m = m0 e-ch,
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