
1128 Chapter 15: Multiple Integrals

Substitutions in Multiple Integrals

This section shows how to evaluate multiple integrals by substitution. As in single
integration, the goal of substitution is to replace complicated integrals by ones that are
easier to evaluate. Substitutions accomplish this by simplifying the integrand, the limits
of integration, or both.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.3 is a special case of a more general sub-
stitution method for double integrals, a method that pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the uy-plane is transformed one-to-one into the region R in
the xy-plane by equations of the form

as suggested in Figure 15.47. We call R the image of G under the transformation, and G
the preimage of R. Any function ƒ(x, y) defined on R can be thought of as a function

x = gsu, yd, y = hsu, yd,
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The Jacobian is also denoted by

to help remember how the determinant in Equation (2) is constructed from the partial
derivatives of x and y. The derivation of Equation (1) is intricate and properly belongs to a
course in advanced calculus. We do not give the derivation here.

For polar coordinates, we have r and in place of u and y. With and
the Jacobian is

Hence, Equation (1) becomes

(3)

which is the equation found in Section 15.3.
Figure 15.48 shows how the equations transform the rectan-

gle into the quarter circle R bounded by in the
first quadrant of the xy-plane.

x2
+ y2

= 1G: 0 … r … 1, 0 … u … p>2 x = r cos u, y = r sin u

 = 6
G

 ƒsr cos u, r sin ud r dr du,

 6
R

 ƒsx, yd dx dy = 6
G

 ƒsr cos u, r sin ud ƒ r ƒ dr du

Jsr, ud = 4 0x
0r

0x
0u

0y
0r

0y
0u

4 = ` cos u -r sin u

sin u r cos u
` = rscos2 u + sin2 ud = r.

y = r sin u ,
x = r cos uu

Jsu, yd =

0sx, yd
0su, yd

ƒ(g(u, y), h(u, y)) defined on G as well. How is the integral of ƒ(x, y) over R related to the
integral of ƒ(g(u, y), h(u, y)) over G?

The answer is: If g, h, and ƒ have continuous partial derivatives and J(u, y) (to be
discussed in a moment) is zero only at isolated points, if at all, then

(1)

The factor J(u, y), whose absolute value appears in Equation (1), is the Jacobian of
the coordinate transformation, named after German mathematician Carl Jacobi. It meas-
ures how much the transformation is expanding or contracting the area around a point in G
as G is transformed into R.

6
R

 ƒsx, yd dx dy = 6
G

 ƒsgsu, yd, hsu, ydd ƒ Jsu, yd ƒ du dy.
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x � g(u, v)
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FIGURE 15.47 The equations
and allow us to

change an integral over a region R in the
xy-plane into an integral over a region G in
the uy-plane.

y = hsu, ydx = gsu, yd

HISTORICAL BIOGRAPHY

Carl Gustav Jacob Jacobi
(1804–1851)

Definition Jacobian
The Jacobian determinant or Jacobian of the coordinate transformation

is

(2)Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 =

0x
0u 

0y
0y

-

0y
0u 

0x
0y

 .

x = gsu, yd, y = hsu, yd

If r Ú 0
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Notice that the integral on the right-hand side of Equation (3) is not the integral of
over a region in the polar coordinate plane. It is the integral of the

product of and r over a region G in the Cartesian
Here is an example of another substitution.

EXAMPLE 1 Applying a Transformation to Integrate

Evaluate

by applying the transformation

(4)

and integrating over an appropriate region in the uy-plane.

Solution We sketch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.49).

u =

2x - y
2

, y =

y
2

L
4

0
 L

x = sy>2d + 1

x = y>2
 
2x - y

2
 dx dy

ru-plane.ƒsr cos u, r sin ud
ƒsr cos u, r sin ud
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FIGURE 15.48 The equations 
transform G into R.r cos u, y = r sin u

x =

v

u
0

y

x
01

2

G

1

4

R

v � 0

v � 2

u � 1u � 0

x � u � v
y � 2v

y � 0

y � 2x � 2

y � 4

y � 2x

FIGURE 15.49 The equations and transform G into
R. Reversing the transformation by the equations and

transforms R into G (Example 1).y = y>2
u = s2x - yd>2

y = 2yx = u + y

To apply Equation (1), we need to find the corresponding uy-region G and the
Jacobian of the transformation. To find them, we first solve Equations (4) for x and y in
terms of u and y. Routine algebra gives

(5)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of R (Figure 15.49).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

y = 22y = 4y = 4
y = 02y = 0y = 0
u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1
u = 0u + y = 2y>2 = yx = y>2

x = u + y y = 2y.
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The Jacobian of the transformation (again from Equations (5)) is

We now have everything we need to apply Equation (1):

EXAMPLE 2 Applying a Transformation to Integrate

Evaluate

Solution We sketch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.50). The integrand suggests the transformation and

Routine algebra produces x and y as functions of u and y:

(6)

From Equations (6), we can find the boundaries of the uy-region G (Figure 15.50).

xy-equations for Corresponding uY-equations Simplified
the boundary of R for the boundary of G uY-equations

The Jacobian of the transformation in Equations (6) is

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 13 -
1
3

2
3

1
3

4 =
1
3

.

y = -2u
2u
3

+
y
3

= 0y = 0

y = u
u
3

-
y
3

= 0x = 0

u = 1au
3

-
y
3
b + a2u

3
+
y
3
b = 1x + y = 1

x =

u
3

-
y
3

, y =

2u
3

+
y
3

.

y = y - 2x.
u = x + y

L
1

0
 L

1 - x

0
2x + y s y - 2xd2 dy dx.

 = L
2

0
 L

1

0
suds2d du dy = L

2

0
 cu2 d

0

1

 dy = L
2

0
 dy = 2.

 L
4

0
 L

x = sy>2d + 1

x = y>2
 
2x - y

2
 dx dy = L

y= 2

y= 0
 L

u = 1

u = 0
 u ƒ Jsu, yd ƒ du dy

Jsu, yd = 4 0x
0u

0x
0y

0y
0u

0y
0y

4 = 4 00u su + yd 0

0y
 su + yd

0

0u s2yd 0

0y
 s2yd

4 = ` 1 1

0 2
` = 2.
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FIGURE 15.50 The equations 
and 

transform G into R. Reversing the
transformation by the equations 
and transforms R into G
(Example 2).
y = y - 2x

u = x + y

y = s2u>3d + sy>3dsu>3d - sy>3d
x =
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Applying Equation (1), we evaluate the integral:

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitutions in Section 15.6 are special cases of a
substitution method that pictures changes of variables in triple integrals as transformations
of three-dimensional regions. The method is like the method for double integrals except
that now we work in three dimensions instead of two.

Suppose that a region G in uyw-space is transformed one-to-one into the region D in
xyz-space by differentiable equations of the form

as suggested in Figure 15.51. Then any function F(x, y, z) defined on D can be thought of
as a function

defined on G. If g, h, and k have continuous first partial derivatives, then the integral of
F(x, y, z) over D is related to the integral of H(u, y, w) over G by the equation

(7)9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsu, y, wd ƒ Jsu, y, wd ƒ du dy dw.

Fsgsu, y, wd, hsu, y, wd, ksu, y, wdd = Hsu, y, wd

x = gsu, y, wd, y = hsu, y, wd, z = ksu, y, wd,

=
1
9

 L
1

0
 u1>2su3

+ 8u3d du = L
1

0
 u7>2 du =

2
9

 u9/2 d
0

1

=
2
9

.

= L
1

0
 L

u

-2u
 u1>2 y2 a1

3
b  dy du =

1
3

 L
1

0
 u1>2 c1

3
 y3 d

y= -2u

y= u

 du

 L
1

0
 L

1 - x

0
2x + y s y - 2xd2 dy dx = L

u = 1

u = 0
 L
y= u

y= -2u
 u1>2 y2

ƒ Jsu, yd ƒ dy du
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x � g(u, y, w)
y � h(u, y, w)
z � k(u, y, w)

y

Cartesian uyw-space Cartesian xyz-space

FIGURE 15.51 The equations and
allow us to change an integral over a region D in Cartesian

xyz-space into an integral over a region G in Cartesian uyw-space.
z = ksu, y, wd

x = gsu, y, wd, y = hsu, y, wd,
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The factor J(u, y, w), whose absolute value appears in this equation, is the Jacobian
determinant

This determinant measures how much the volume near a point in G is being expanded or
contracted by the transformation from (u, y, w) to (x, y, z) coordinates. As in the two-
dimensional case, the derivation of the change-of-variable formula in Equation (7) is com-
plicated and we do not go into it here.

For cylindrical coordinates, and z take the place of u, y, and w. The transforma-
tion from Cartesian to Cartesian xyz-space is given by the equations

(Figure 15.52). The Jacobian of the transformation is

The corresponding version of Equation (7) is

We can drop the absolute value signs whenever 
For spherical coordinates, and take the place of u, y, and w. The transforma-

tion from Cartesian to Cartesian xyz-space is given by

(Figure 15.53). The Jacobian of the transformation is

Jsr, f, ud = 6
0x
0r

0x
0f

0x
0u

0y
0r

0y
0f

0y
0u

0z
0r

0z
0f

0z
0u

6 = r2 sin f

x = r sin f cos u, y = r sin f sin u, z = r cos f

rfu-space
ur, f ,

r Ú 0 .

9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsr, u, zd ƒ r ƒ dr du dz.

 = r cos2 u + r sin2 u = r.

Jsr, u, zd = 6
0x
0r

0x
0u

0x
0z

0y
0r

0y
0u

0y
0z

0z
0r

0z
0u

0z
0z

6 = 3 cos u -r sin u 0

sin u   r cos u 0

0   0 1

3
x = r cos u, y = r sin u, z = z

ruz-space
r, u ,

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 =

0sx, y, zd
0su, y, wd

.
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FIGURE 15.52 The equations
and 

transform the cube G into a cylindrical
wedge D.

z = zx = r cos u, y = r sin u ,
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Here is an example of another substitution. Although we could evaluate the integral in
this example directly, we have chosen it to illustrate the substitution method in a simple
(and fairly intuitive) setting.

EXAMPLE 3 Applying a Transformation to Integrate

Evaluate

by applying the transformation

(8)

and integrating over an appropriate region in uyw-space.

Solution We sketch the region D of integration in xyz-space and identify its boundaries
(Figure 15.54). In this case, the bounding surfaces are planes.

To apply Equation (7), we need to find the corresponding uyw-region G and the
Jacobian of the transformation. To find them, we first solve Equations (8) for x, y, and z in
terms of u, y, and w. Routine algebra gives

(9)

We then find the boundaries of G by substituting these expressions into the equations for
the boundaries of D:

x = u + y, y = 2y, z = 3w.

u = s2x - yd>2, y = y>2, w = z>3

L
3

0
 L

4

0
 L

x = sy>2d + 1

x = y>2
 a2x - y

2
+

z
3
b  dx dy dz

(Exercise 17). The corresponding version of Equation (7) is

We can drop the absolute value signs because is never negative for 
Note that this is the same result we obtained in Section 15.6.

0 … f … p.sin f

9
D

 Fsx, y, zd dx dy dz = 9
G

 Hsr, f, ud ƒ p2 sin f ƒ dr df du.
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FIGURE 15.53 The equations and
transform the cube G into the spherical wedge D.z = r cos f

x = r sin f cos u, y = r sin f sin u,
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y
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FIGURE 15.54 The equations
and 

transform G into D. Reversing the
transformation by the equations

and 
transforms D into G (Example 3).

w = z>3u = s2x - yd>2, y = y>2,

z = 3wx = u + y, y = 2y,
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xyz-equations for Corresponding uYw-equations Simplified
the boundary of D for the boundary of G uYw-equations

The Jacobian of the transformation, again from Equations (9), is

We now have everything we need to apply Equation (7):

The goal of this section was to introduce you to the ideas involved in coordinate transfor-
mations. A thorough discussion of transformations, the Jacobian, and multivariable substi-
tution is best given in an advanced calculus course after a study of linear algebra.

 = 6 Cw + w2 D01 = 6s2d = 12.

 = 6L
1

0
 L

2

0
 a1

2
+ wb  dy dw = 6L

1

0
 cy

2
+ yw d

0

2

 dw = 6L
1

0
s1 + 2wd dw

 = L
1

0
 L

2

0
 L

1

0
su + wds6d du dy dw = 6L

1

0
 L

2

0
 cu2

2
+ uw d

0

1

 dy dw

 = L
1

0
 L

2

0
 L

1

0
su + wd ƒ Jsu, y, wd ƒ du dy dw

 L
3

0
 L

4

0
 L

x = sy>2d + 1

x = y>2
 a2x - y

2
+

z
3
b  dx dy dz

Jsu, y, wd = 6
0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 = 3 1 1 0

0 2 0

0 0 3

3 = 6.

w = 13w = 3z = 3
w = 03w = 0z = 0
y = 22y = 4y = 4
y = 02y = 0y = 0
u = 1u + y = s2y>2d + 1 = y + 1x = s y>2d + 1
u = 0u + y = 2y>2 = yx = y>2
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