15.7 Substitutions in Multiple Integrals **1135**

EXERCISES 15.7

Finding Jacobians and Transformed Regions for Two Variables

1. a. Solve the system

$$u = x - y, \qquad v = 2x + y$$

for *x* and *y* in terms of *u* and *v*. Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

b. Find the image under the transformation u = x - y,

v = 2x + y of the triangular region with vertices (0, 0), (1, 1), and (1, -2) in the *xy*-plane. Sketch the transformed region in the *uv*-plane.

2. a. Solve the system

$$u = x + 2y, \qquad v = x - y$$

for x and y in terms of u and v. Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

- **b.** Find the image under the transformation u = x + 2y, v = x - y of the triangular region in the *xy*-plane bounded by the lines y = 0, y = x, and x + 2y = 2. Sketch the transformed region in the *uv*-plane.
- 3. a. Solve the system

$$u = 3x + 2y, \qquad v = x + 4y$$

for *x* and *y* in terms of *u* and *v*. Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

- **b.** Find the image under the transformation u = 3x + 2y, v = x + 4y of the triangular region in the *xy*plane bounded by the *x*-axis, the *y*-axis, and the line x + y = 1. Sketch the transformed region in the *uv*-plane.
- **4. a.** Solve the system

$$u = 2x - 3y, \qquad v = -x + y$$

for x and y in terms of u and v. Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

b. Find the image under the transformation u = 2x - 3y, v = -x + y of the parallelogram *R* in the *xy*-plane with boundaries x = -3, x = 0, y = x, and y = x + 1. Sketch the transformed region in the *uv*-plane.

Applying Transformations to Evaluate Double Integrals

5. Evaluate the integral

$$\int_0^4 \int_{x=y/2}^{x=(y/2)+1} \frac{2x-y}{2} \, dx \, dy$$

from Example 1 directly by integration with respect to x and y to confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

$$\iint_{R} (2x^2 - xy - y^2) \, dx \, dy$$

for the region R in the first quadrant bounded by the lines y = -2x + 4, y = -2x + 7, y = x - 2, and y = x + 1.

7. Use the transformation in Exercise 3 to evaluate the integral

$$\iint\limits_R (3x^2 + 14xy + 8y^2) \, dx \, dy$$

for the region R in the first quadrant bounded by the lines y = -(3/2)x + 1, y = -(3/2)x + 3, y = -(1/4)x, and y = -(1/4)x + 1.

8. Use the transformation and parallelogram *R* in Exercise 4 to evaluate the integral

$$\iint_R 2(x-y) \, dx \, dy$$

9. Let *R* be the region in the first quadrant of the *xy*-plane bounded by the hyperbolas xy = 1, xy = 9 and the lines y = x, y = 4x. Use the transformation x = u/v, y = uv with u > 0 and v > 0 to rewrite

$$\iint\limits_{R} \left(\sqrt{\frac{y}{x}} + \sqrt{xy} \right) dx \, dy$$

as an integral over an appropriate region G in the *uv*-plane. Then evaluate the *uv*-integral over G.

- 10. a. Find the Jacobian of the transformation x = u, y = uv, and sketch the region $G: 1 \le u \le 2, 1 \le uv \le 2$ in the *uv*-plane.
 - **b.** Then use Equation (1) to transform the integral

$$\int_{1}^{2} \int_{1}^{2} \frac{y}{\overline{x}} \, dy \, dx$$

into an integral over G, and evaluate both integrals.

- 11. Polar moment of inertia of an elliptical plate A thin plate of constant density covers the region bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1, a > 0, b > 0$, in the *xy*-plane. Find the first moment of the plate about the origin. (*Hint:* Use the transformation $x = ar \cos \theta, y = br \sin \theta$.)
- 12. The area of an ellipse The area πab of the ellipse $x^2/a^2 + y^2/b^2 = 1$ can be found by integrating the function f(x, y) = 1 over the region bounded by the ellipse in the *xy*-plane. Evaluating the integral directly requires a trigonometric substitution. An easier way to evaluate the integral is to use the transformation x = au, y = bv and evaluate the transformed integral over the disk $G: u^2 + v^2 \leq 1$ in the *uv*-plane. Find the area this way.
- **13.** Use the transformation in Exercise 2 to evaluate the integral

$$\int_0^{2/3} \int_y^{2-2y} (x+2y) e^{(y-x)} \, dx \, dy$$

by first writing it as an integral over a region G in the uv-plane.

14. Use the transformation x = u + (1/2)v, y = v to evaluate the integral

$$\int_0^2 \int_{y/2}^{(y+4)/2} y^3 (2x-y) e^{(2x-y)^2} \, dx \, dy$$

by first writing it as an integral over a region G in the uv-plane.

Finding Jacobian Determinants

15. Find the Jacobian $\partial(x, y)/\partial(u, v)$ for the transformation

a. $x = u \cos v$, $y = u \sin v$

b.
$$x = u \sin v$$
, $y = u \cos v$.

16. Find the Jacobian $\partial(x, y, z)/\partial(u, v, w)$ of the transformation

a. $x = u \cos v$, $y = u \sin v$, z = w

- **b.** x = 2u 1, y = 3v 4, z = (1/2)(w 4).
- 17. Evaluate the appropriate determinant to show that the Jacobian of the transformation from Cartesian $\rho\phi\theta$ -space to Cartesian *xyz*-space is $\rho^2 \sin \phi$.

18. Substitutions in single integrals How can substitutions in single definite integrals be viewed as transformations of regions? What is the Jacobian in such a case? Illustrate with an example.

Applying Transformations to Evaluate Triple Integrals

- **19.** Evaluate the integral in Example 3 by integrating with respect to *x*, *y*, and *z*.
- 20. Volume of an ellipsoid Find the volume of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(*Hint*: Let x = au, y = bv, and z = cw. Then find the volume of an appropriate region in *uvw*-space.)

21. Evaluate

$$\iiint |xyz| \, dx \, dy \, dz$$

over the solid ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

(*Hint*: Let x = au, y = bv, and z = cw. Then integrate over an appropriate region in *uvw*-space.)

22. Let D be the region in xyz-space defined by the inequalities

$$1 \le x \le 2, \quad 0 \le xy \le 2, \quad 0 \le z \le 1.$$

Evaluate

$$\iiint (x^2y + 3xyz) \, dx \, dy \, dz$$

by applying the transformation

$$u = x$$
, $v = xy$, $w = 3z$

and integrating over an appropriate region G in uvw-space.

- 23. Centroid of a solid semiellipsoid Assuming the result that the centroid of a solid hemisphere lies on the axis of symmetry three-eighths of the way from the base toward the top, show, by transforming the appropriate integrals, that the center of mass of a solid semiellipsoid $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1$, $z \ge 0$, lies on the z-axis three-eighths of the way from the base toward the top. (You can do this without evaluating any of the integrals.)
- **24.** Cylindrical shells In Section 6.2, we learned how to find the volume of a solid of revolution using the shell method; namely, if the region between the curve y = f(x) and the *x*-axis from *a* to *b* (0 < a < b) is revolved about the *y*-axis, the volume of the resulting solid is $\int_{a}^{b} 2\pi x f(x) dx$. Prove that finding volumes by using triple integrals gives the same result. (*Hint:* Use cylindrical coordinates with the roles of *y* and *z* changed.)