15.7 Substitutions in Multiple Integrals **1135**

EXERCISES 15.7

Finding Jacobians and Transformed Regions for Two Variables

1. a. Solve the system

Exercises

$$
u = x - y, \qquad v = 2x + y
$$

for *x* and *y* in terms of *u* and y. Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

b. [Find the image under the transformation](tcu1507a.html) $u = x - y$,

 $v = 2x + y$ of the triangular region with vertices $(0, 0)$, $(1, 1)$, and $(1, -2)$ in the *xy*-plane. Sketch the transformed region in the *u*y-plane.

2. a. Solve the system

$$
u = x + 2y, \qquad v = x - y
$$

for x and y in terms of u and v . Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

3. a. Solve the system

$$
u = 3x + 2y, \qquad v = x + 4y
$$

for x and y in terms of u and v . Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

- **b.** Find the image under the transformation $u = 3x + 2y, v = x + 4y$ of the triangular region in the *xy*plane bounded by the *x*-axis, the *y*-axis, and the line $x + y = 1$. Sketch the transformed region in the *uv*-plane.
- **4. a.** Solve the system

$$
u = 2x - 3y, \qquad v = -x + y
$$

for x and y in terms of u and v . Then find the value of the Jacobian $\partial(x, y)/\partial(u, v)$.

b. Find the image under the transformation $u = 2x - 3y$, $v = -x + y$ of the parallelogram *R* in the *xy*-plane with boundaries $x = -3$, $x = 0$, $y = x$, and $y = x + 1$. Sketch the transformed region in the *u*y-plane.

Applying Transformations to Evaluate Double Integrals

5. Evaluate the integral

xercises

$$
\int_0^4 \int_{x=y/2}^{x=(y/2)+1} \frac{2x-y}{2} dx dy
$$

from Example 1 directly by integration with respect to *x* and *y* to confirm that its value is 2.

6. [Use the transformation in Exercise 1 to evaluate the integral](tcu1507b.html)

$$
\iint\limits_R (2x^2 - xy - y^2) \, dx \, dy
$$

for the region R in the first quadrant bounded by the lines $y = -2x + 4$, $y = -2x + 7$, $y = x - 2$, and $y = x + 1$.

7. Use the transformation in Exercise 3 to evaluate the integral

$$
\iint\limits_R (3x^2 + 14xy + 8y^2) \, dx \, dy
$$

for the region *R* in the first quadrant bounded by the lines $y = -(3/2)x + 1$, $y = -(3/2)x + 3$, $y = -(1/4)x$, and $y =$ $-(1/4)x + 1$.

8. Use the transformation and parallelogram *R* in Exercise 4 to evaluate the integral

$$
\iint\limits_R 2(x-y)\,dx\,dy.
$$

9. Let *R* be the region in the first quadrant of the *xy*-plane bounded by the hyperbolas $xy = 1$, $xy = 9$ and the lines $y = x$, $y = 4x$. Use the transformation $x = u/v$, $y = uv$ with $u > 0$ and $v > 0$ to rewrite

$$
\iint\limits_R \left(\sqrt{\frac{y}{x}} + \sqrt{xy}\right) dx dy
$$

as an integral over an appropriate region *G* in the *u*y-plane. Then evaluate the *u*y-integral over *G*.

- **10. a.** Find the Jacobian of the transformation $x = u, y = uv$, and sketch the region G: $1 \le u \le 2$, $1 \le uv \le 2$ in the *uv*-plane.
	- **b.** Then use Equation (1) to transform the integral

$$
\int_1^2 \int_1^2 \frac{y}{x} \, dy \, dx
$$

into an integral over *G*, and evaluate both integrals.

- **11. Polar moment of inertia of an elliptical plate** A thin plate of constant density covers the region bounded by the ellipse $\int x^2/a^2 + y^2/b^2 = 1, a > 0, b > 0$, in the *xy*-plane. Find the first moment of the plate about the origin. (*Hint:* Use the transfor- $\text{mation } x = ar \cos \theta, y = br \sin \theta.$
- **12. The area of an ellipse** The area πab of the ellipse $x^2/a^2 + y^2/b^2 = 1$ can be found by integrating the function $f(x, y) = 1$ over the region bounded by the ellipse in the *xy*-plane. [Evaluating the integral directly requires a trigonometric substitu](tcu1507b.html)tion. An easier way to evaluate the integral is to use the transformation $x = au$, $y = bv$ and evaluate the transformed integral over the disk $G: u^2 + v^2 \le 1$ in the *uv*-plane. Find the area this way.
- **13.** Use the transformation in Exercise 2 to evaluate the integral

$$
\int_0^{2/3} \int_y^{2-2y} (x+2y)e^{(y-x)} dx dy
$$

by first writing it as an integral over a region *G* in the *u*y-plane.

14. Use the transformation $x = u + (1/2)v, y = v$ to evaluate the integral

$$
\int_0^2 \int_{y/2}^{(y+4)/2} y^3 (2x - y) e^{(2x - y)^2} dx dy
$$

by first writing it as an integral over a region *G* in the *u*y-plane.

Finding Jacobian Determinants

15. Find the Jacobian $\partial(x, y) / \partial(u, v)$ for the transformation

a. $x = u \cos v$, $y = u \sin v$

 \overline{a}

b.
$$
x = u \sin v
$$
, $y = u \cos v$.

16. Find the Jacobian $\partial(x, y, z)/\partial(u, v, w)$ of the transformation

a. $x = u \cos v$, $y = u \sin v$, $z = w$

b. $x = 2u - 1$, $y = 3v - 4$, $z = (1/2)(w - 4)$.

17. [Evaluate the appropriate determinant to show that the Jacobian of](tcu1507c.html) the transformation from Cartesian $\rho\phi\theta$ -space to Cartesian *xyz*space is $\rho^2 \sin \phi$.

18. Substitutions in single integrals How can substitutions in [single definite integrals be viewed as transformations of](tcu1507c.html) regions? What is the Jacobian in such a case? Illustrate with an example.

Applying Transformations to Evaluate Triple Integrals

19. [Evaluate the integral in Example 3 by integrating with respect to](tcu1507d.html) *x*, *y*, and *z*.

20. Volume of an ellipsoid Find the volume of the ellipsoid

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.
$$

(*Hint*: Let $x = au$, $y = bv$, and $z = cw$. Then find the volume of an appropriate region in *uvw*-space.)

21. Evaluate

$$
\iiint |xyz| dx dy dz
$$

over the solid ellipsoid

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.
$$

(*Hint*: Let $x = au$, $y = bv$, and $z = cw$. Then integrate over an appropriate region in *uvw*-space.)

22. Let *D* be the region in *xyz*-space defined by the inequalities

$$
1 \le x \le 2, \quad 0 \le xy \le 2, \quad 0 \le z \le 1.
$$

Evaluate

$$
\iiint\limits_D (x^2y + 3xyz) \, dx \, dy \, dz
$$

by applying the transformation

$$
u = x, \quad v = xy, \quad w = 3z
$$

and integrating over an appropriate region *G* in *uvw*-space.

- **23. Centroid of a solid semiellipsoid** Assuming the result that the centroid of a solid hemisphere lies on the axis of symmetry three-eighths of the way from the base toward the top, show, by [transforming the appropriate integrals, that the center of mass](tcu1507d.html) of a solid semiellipsoid $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1$, $z \geq 0$, lies on the *z*-axis three-eighths of the way from the base toward the top. (You can do this without evaluating any of the integrals.)
- **24. Cylindrical shells** In Section 6.2, we learned how to find the volume of a solid of revolution using the shell method; namely, if the region between the curve $y = f(x)$ and the *x*-axis from *a* to *b* $(0 \lt a \lt b)$ is revolved about the *y*-axis, the volume of the resulting solid is $\int_{a}^{b} 2\pi x f(x) dx$. Prove that finding volumes by using triple integrals gives the same result. (*Hint:* Use cylindrical coordinates with the roles of *y* and *z* changed.)