# Chapter 15 Additional and Advanced Exercises

## Volumes

- 1. Sand pile: double and triple integrals The base of a sand pile covers the region in the *xy*-plane that is bounded by the parabola  $x^2 + y = 6$  and the line y = x. The height of the sand above the point (x, y) is  $x^2$ . Express the volume of sand as (a) a double integral, (b) a triple integral. Then (c) find the volume.
- **2. Water in a hemispherical bowl** A hemispherical bowl of radius 5 cm is filled with water to within 3 cm of the top. Find the volume of water in the bowl.
- **3.** Solid cylindrical region between two planes Find the volume of the portion of the solid cylinder  $x^2 + y^2 \le 1$  that lies between the planes z = 0 and x + y + z = 2.
- 4. Sphere and paraboloid Find the volume of the region bounded above by the sphere  $x^2 + y^2 + z^2 = 2$  and below by the paraboloid  $z = x^2 + y^2$ .
- 5. Two paraboloids Find the volume of the region bounded above by the paraboloid  $z = 3 - x^2 - y^2$  and below by the paraboloid  $z = 2x^2 + 2y^2$ .
- 6. Spherical coordinates Find the volume of the region enclosed by the spherical coordinate surface  $\rho = 2 \sin \phi$  (see accompanying figure).



**7. Hole in sphere** A circular cylindrical hole is bored through a solid sphere, the axis of the hole being a diameter of the sphere. The volume of the remaining solid is

$$V = 2 \int_0^{2\pi} \int_0^{\sqrt{3}} \int_1^{\sqrt{4-z^2}} r \, dr \, dz \, d\theta \, .$$

- a. Find the radius of the hole and the radius of the sphere.
- **b.** Evaluate the integral.
- 8. Sphere and cylinder Find the volume of material cut from the solid sphere  $r^2 + z^2 \le 9$  by the cylinder  $r = 3 \sin \theta$ .

- 9. Two paraboloids Find the volume of the region enclosed by the surfaces  $z = x^2 + y^2$  and  $z = (x^2 + y^2 + 1)/2$ .
- 10. Cylinder and surface z = xy Find the volume of the region in the first octant that lies between the cylinders r = 1 and r = 2 and that is bounded below by the *xy*-plane and above by the surface z = xy.

#### **Changing the Order of Integration**

**11.** Evaluate the integral

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \, dx.$$

(Hint: Use the relation

$$\frac{e^{-ax} - e^{-bx}}{x} = \int_a^b e^{-xy} \, dy$$

to form a double integral and evaluate the integral by changing the order of integration.)

**12. a. Polar coordinates** Show, by changing to polar coordinates, that

$$\int_0^{a\sin\beta} \int_{y\cot\beta}^{\sqrt{a^2-y^2}} \ln(x^2 + y^2) \, dx \, dy = a^2 \beta \left( \ln a - \frac{1}{2} \right),$$

where a > 0 and  $0 < \beta < \pi/2$ .

- **b.** Rewrite the Cartesian integral with the order of integration reversed.
- **13. Reducing a double to a single integral** By changing the order of integration, show that the following double integral can be reduced to a single integral:

$$\int_0^x \int_0^u e^{m(x-t)} f(t) \, dt \, du = \int_0^x (x-t) e^{m(x-t)} f(t) \, dt.$$

Similarly, it can be shown that

$$\int_0^x \int_0^v \int_0^u e^{m(x-t)} f(t) \, dt \, du \, dv = \int_0^x \frac{(x-t)^2}{2} e^{m(x-t)} f(t) \, dt.$$

14. Transforming a double integral to obtain constant limits Sometimes a multiple integral with variable limits can be changed into one with constant limits. By changing the order of integration, show that

$$\int_0^1 f(x) \left( \int_0^x g(x - y) f(y) \, dy \right) dx$$
  
=  $\int_0^1 f(y) \left( \int_y^1 g(x - y) f(x) \, dx \right) dy$   
=  $\frac{1}{2} \int_0^1 \int_0^1 g(|x - y|) f(x) f(y) \, dx \, dy.$ 

### **Masses and Moments**

**15. Minimizing polar inertia** A thin plate of constant density is to occupy the triangular region in the first quadrant of the *xy*-plane

having vertices (0, 0), (a, 0), and (a, 1/a). What value of a will minimize the plate's polar moment of inertia about the origin?

- 16. Polar inertia of triangular plate Find the polar moment of inertia about the origin of a thin triangular plate of constant density  $\delta = 3$  bounded by the *y*-axis and the lines y = 2x and y = 4 in the *xy*-plane.
- 17. Mass and polar inertia of a counterweight The counterweight of a flywheel of constant density 1 has the form of the smaller segment cut from a circle of radius a by a chord at a distance b from the center (b < a). Find the mass of the counterweight and its polar moment of inertia about the center of the wheel.
- 18. Centroid of boomerang Find the centroid of the boomerangshaped region between the parabolas  $y^2 = -4(x - 1)$  and  $y^2 = -2(x - 2)$  in the *xy*-plane.

#### **Theory and Applications**

19. Evaluate

$$\int_0^a \int_0^b e^{\max(b^2 x^2, a^2 y^2)} \, dy \, dx,$$

where a and b are positive numbers and

$$\max(b^{2}x^{2}, a^{2}y^{2}) = \begin{cases} b^{2}x^{2} & \text{if } b^{2}x^{2} \ge a^{2}y^{2} \\ a^{2}y^{2} & \text{if } b^{2}x^{2} < a^{2}y^{2}. \end{cases}$$

20. Show that

$$\iint \frac{\partial^2 F(x, y)}{\partial x \, \partial y} \, dx \, dy$$

over the rectangle  $x_0 \le x \le x_1, y_0 \le y \le y_1$ , is

$$F(x_1, y_1) - F(x_0, y_1) - F(x_1, y_0) + F(x_0, y_0).$$

**21.** Suppose that f(x, y) can be written as a product f(x, y) = F(x)G(y) of a function of x and a function of y. Then the integral of f over the rectangle R:  $a \le x \le b, c \le y \le d$  can be evaluated as a product as well, by the formula

$$\iint_{R} f(x, y) \, dA = \left( \int_{a}^{b} F(x) \, dx \right) \left( \int_{c}^{d} G(y) \, dy \right). \tag{1}$$

The argument is that

$$\iint_{R} f(x, y) \, dA = \int_{c}^{d} \left( \int_{a}^{b} F(x) G(y) \, dx \right) dy \tag{i}$$

$$= \int_{c}^{d} \left( G(y) \int_{a}^{b} F(x) \, dx \right) dy \tag{ii}$$

$$= \int_{c}^{d} \left( \int_{a}^{b} F(x) \, dx \right) G(y) \, dy \tag{iii}$$

$$= \left(\int_{a}^{b} F(x) \, dx\right) \int_{c}^{d} G(y) \, dy \, . \qquad (\text{iv})$$

**a.** Give reasons for steps (i) through (v).

When it applies, Equation (1) can be a time saver. Use it to evaluate the following integrals.

**b.** 
$$\int_0^{\ln 2} \int_0^{\pi/2} e^x \cos y \, dy \, dx$$
 **c.**  $\int_1^2 \int_{-1}^1 \frac{x}{y^2} \, dx \, dy$ 

- **22.** Let  $D_{\mathbf{u}}f$  denote the derivative of  $f(x, y) = (x^2 + y^2)/2$  in the direction of the unit vector  $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ .
  - a. Finding average value Find the average value of  $D_u f$  over the triangular region cut from the first quadrant by the line x + y = 1.
  - **b.** Average value and centroid Show in general that the average value of  $D_{\mathbf{u}}f$  over a region in the *xy*-plane is the value of  $D_{\mathbf{u}}f$  at the centroid of the region.
- **23.** The value of  $\Gamma(1/2)$  The gamma function,

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt,$$

extends the factorial function from the nonnegative integers to other real values. Of particular interest in the theory of differential equations is the number

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{(1/2)-1} e^{-t} dt = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt.$$
 (2)

**a.** If you have not yet done Exercise 37 in Section 15.3, do it now to show that

$$I=\int_0^\infty e^{-y^2}\,dy=\frac{\sqrt{\pi}}{2}.$$

- **b.** Substitute  $y = \sqrt{t}$  in Equation (2) to show that  $\Gamma(1/2) = 2I = \sqrt{\pi}$ .
- 24. Total electrical charge over circular plate The electrical charge distribution on a circular plate of radius R meters is  $\sigma(r, \theta) = kr(1 \sin \theta)$  coulomb/m<sup>2</sup> (k a constant). Integrate  $\sigma$  over the plate to find the total charge Q.

- **25.** A parabolic rain gauge A bowl is in the shape of the graph of  $z = x^2 + y^2$  from z = 0 to z = 10 in. You plan to calibrate the bowl to make it into a rain gauge. What height in the bowl would correspond to 1 in. of rain? 3 in. of rain?
- **26.** Water in a satellite dish A parabolic satellite dish is 2 m wide and 1/2 m deep. Its axis of symmetry is tilted 30 degrees from the vertical.
  - **a.** Set up, but do not evaluate, a triple integral in rectangular coordinates that gives the amount of water the satellite dish will hold. (*Hint:* Put your coordinate system so that the satellite dish is in "standard position" and the plane of the water level is slanted.) (*Caution:* The limits of integration are not "nice.")
  - **b.** What would be the smallest tilt of the satellite dish so that it holds no water?
- 27. An infinite half-cylinder Let D be the interior of the infinite right circular half-cylinder of radius 1 with its single-end face suspended 1 unit above the origin and its axis the ray from (0, 0, 1) to  $\infty$ . Use cylindrical coordinates to evaluate

$$\iiint_D z(r^2 + z^2)^{-5/2} \, dV.$$

**28.** Hypervolume We have learned that  $\int_{a}^{b} 1 dx$  is the length of the interval [a, b] on the number line (one-dimensional space),  $\iint_{R} 1 dA$  is the area of region *R* in the *xy*-plane (two-dimensional space), and  $\iiint_{D} 1 dV$  is the volume of the region *D* in three-dimensional space (*xyz*-space). We could continue: If *Q* is a region in 4-space (*xyzw*-space), then  $\iiint_{Q} 1 dV$  is the "hypervolume" of *Q*. Use your generalizing abilities and a Cartesian coordinate system of 4-space to find the hypervolume inside the unit 4-sphere  $x^2 + y^2 + z^2 + w^2 = 1$ .