Chapter 15 Practice Exercises

Planar Regions of Integration

In Exercises 1–4, sketch the region of integration and evaluate the double integral.

1.
$$
\int_{1}^{10} \int_{0}^{1/y} ye^{xy} dx dy
$$

\n**2.**
$$
\int_{0}^{1} \int_{0}^{x^{3}} e^{y/x} dy dx
$$

\n**3.**
$$
\int_{0}^{3/2} \int_{-\sqrt{9-4t^{2}}}^{\sqrt{9-4t^{2}}} t ds dt
$$

\n**4.**
$$
\int_{0}^{1} \int_{\sqrt{y}}^{2-\sqrt{y}} xy dx dy
$$

Reversing the Order of Integration

In Exercises 5–8, sketch the region of integration and write an equivalent integral with the order of integration reversed. Then evaluate both integrals.

5.
$$
\int_{0}^{4} \int_{-\sqrt{4-y}}^{\sqrt{y-4}} dx dy
$$

\n**6.**
$$
\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{x} dy dx
$$

\n**7.**
$$
\int_{0}^{3/2} \int_{-\sqrt{9-4y^{2}}}^{\sqrt{9-4y^{2}}} y dx dy
$$

\n**8.**
$$
\int_{0}^{2} \int_{0}^{4-x^{2}} 2x dy dx
$$

Evaluating Double Integrals

Evaluate the integrals in Exercises 9–12.

9.
$$
\int_0^1 \int_{2y}^2 4 \cos(x^2) dx dy
$$

\n**10.**
$$
\int_0^2 \int_{y/2}^1 e^{x^2} dx dy
$$

\n**11.**
$$
\int_0^8 \int_{\sqrt[3]{x}}^2 \frac{dy dx}{y^4 + 1}
$$

\n**12.**
$$
\int_0^1 \int_{\sqrt[3]{y}}^1 \frac{2\pi \sin \pi x^2}{x^2} dx dy
$$

Areas and Volumes

- **13. Area between line and parabola** Find the area of the region enclosed by the line $y = 2x + 4$ and the parabola $y = 4 - x^2$ in the *xy*-plane.
- **14. Area bounded by lines and parabola** Find the area of the "triangular" region in the *xy*-plane that is bounded on the right by the parabola $y = x^2$, on the left by the line $x + y = 2$, and above by the line $y = 4$.
- **15. Volume of the region under a paraboloid** Find the volume under the paraboloid $z = x^2 + y^2$ above the triangle enclosed by the lines $y = x, x = 0$, and $x + y = 2$ in the *xy*-plane.
- **16. Volume of the region under parabolic cylinder** Find the volume under the parabolic cylinder $z = x^2$ above the region enclosed by the parabola $y = 6 - x^2$ and the line $y = x$ in the *xy*-plane.

Average Values

Find the average value of $f(x, y) = xy$ over the regions in Exercises 17 and 18.

- **17.** The square bounded by the lines $x = 1$, $y = 1$ in the first quadrant
- **18.** The quarter circle $x^2 + y^2 \le 1$ in the first quadrant

Masses and Moments

- 19. Centroid Find the centroid of the "triangular" region bounded by the lines $x = 2$, $y = 2$ and the hyperbola $xy = 2$ in the *xy*-plane.
- **20. Centroid** Find the centroid of the region between the parabola $x + y^2 - 2y = 0$ and the line $x + 2y = 0$ in the *xy*-plane.
- **21. Polar moment** Find the polar moment of inertia about the origin of a thin triangular plate of constant density $\delta = 3$ bounded by the *y*-axis and the lines $y = 2x$ and $y = 4$ in the *xy*-plane.
- **22. Polar moment** Find the polar moment of inertia about the center of a thin rectangular sheet of constant density $\delta = 1$ bounded by the lines

a. $x = \pm 2$, $y = \pm 1$ in the *xy*-plane

b. $x = \pm a$, $y = \pm b$ in the *xy*-plane.

(*Hint:* Find I_x . Then use the formula for I_x to find I_y and add the two to find I_0).

- **23. Inertial moment and radius of gyration** Find the moment of inertia and radius of gyration about the *x*-axis of a thin plate of constant density δ covering the triangle with vertices $(0, 0)$, $(3, 0)$, and (3, 2) in the *xy*-plane.
- **24. Plate with variable density** Find the center of mass and the moments of inertia and radii of gyration about the coordinate axes of a thin plate bounded by the line $y = x$ and the parabola $y = x^2$ in the *xy*-plane if the density is $\delta(x, y) = x + 1$.
- **25. Plate with variable density** Find the mass and first moments about the coordinate axes of a thin square plate bounded by the lines $x = \pm 1$, $y = \pm 1$ in the *xy*-plane if the density is $\delta(x, y) =$ $x^2 + y^2 + 1/3$.
- **26. Triangles with same inertial moment and radius of gyration** Find the moment of inertia and radius of gyration about the *x*-axis of a thin triangular plate of constant density δ whose base lies along the interval [0, *b*] on the *x*-axis and whose vertex lies on the line $y = h$ above the *x*-axis. As you will see, it does not matter where on the line this vertex lies. All such triangles have the same moment of inertia and radius of gyration about the *x*-axis.

Polar Coordinates

Evaluate the integrals in Exercises 27 and 28 by changing to polar coordinates.

27.
$$
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2 dy dx}{(1+x^2+y^2)^2}
$$

28.
$$
\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln(x^2+y^2+1) dx dy
$$

29. Centroid Find the centroid of the region in the polar coordinate plane defined by the inequalities $0 \le r \le 3, -\pi/3 \le \theta \le \pi/3$.

- **30. Centroid** Find the centroid of the region in the first quadrant bounded by the rays $\theta = 0$ and $\theta = \pi/2$ and the circles $r = 1$ and $r = 3$.
- **31. a. Centroid** Find the centroid of the region in the polar coordinate plane that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle $r = 1$.
	- **b.** Sketch the region and show the centroid in your sketch.
- **32. a. Centroid** Find the centroid of the plane region defined by the polar coordinate inequalities $0 \le r \le a$, $-\alpha \le \theta \le \alpha$ $(0 < \alpha \leq \pi)$. How does the centroid move as $\alpha \rightarrow \pi^{-}$?
	- **b.** Sketch the region for $\alpha = 5\pi/6$ and show the centroid in your sketch.
- **33. Integrating over lemniscate** Integrate the function $f(x, y) =$ $1/(1 + x^2 + y^2)^2$ over the region enclosed by one loop of the lemniscate $(x^2 + y^2)^2 - (x^2 - y^2) = 0$.
- **34.** Integrate $f(x, y) = 1/(1 + x^2 + y^2)^2$ over
	- **a. Triangular region** The triangle with vertices (0, 0), (1, 0), $(1, \sqrt{3})$.
	- **b. First quadrant** The first quadrant of the *xy*-plane.

Triple Integrals in Cartesian Coordinates

Evaluate the integrals in Exercises 35–38.

35.
$$
\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos (x + y + z) dx dy dz
$$

36.
$$
\int_{\ln 6}^{\ln 7} \int_0^{\ln 2} \int_{\ln 4}^{\ln 5} e^{(x+y+z)} dz dy dx
$$

37.
$$
\int_0^1 \int_0^x \int_0^{x^2} (2x - y - z) dz dy dx
$$

38.
$$
\int_1^e \int_1^x \int_0^z \frac{2y}{z^3} dy dz dx
$$

39. Volume Find the volume of the wedge-shaped region enclosed on the side by the cylinder $x = -\cos y, -\pi/2 \le y \le \pi/2$, on the top by the plane $z = -2x$, and below by the *xy*-plane.

40. Volume Find the volume of the solid that is bounded above by the cylinder $z = 4 - x^2$, on the sides by the cylinder $x^2 +$ $y^2 = 4$, and below by the *xy*-plane.

- **41. Average value** Find the average value of $f(x, y, z) =$ $30xz \sqrt{x^2 + y}$ over the rectangular solid in the first octant bounded by the coordinate planes and the planes $x = 1, y = 3$, $z = 1$.
- **42. Average value** Find the average value of ρ over the solid sphere $\rho \le a$ (spherical coordinates).

Cylindrical and Spherical Coordinates

43. Cylindrical to rectangular coordinates Convert

$$
\int_0^{2\pi} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} 3 \, dz \, r \, dr \, d\theta, \qquad r \ge 0
$$

to **(a)** rectangular coordinates with the order of integration *dz dx dy* and **(b)** spherical coordinates. Then **(c)** evaluate one of the integrals.

44. Rectangular to cylindrical coordinates (a) Convert to cylindrical coordinates. Then **(b)** evaluate the new integral.

$$
\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-(x^2+y^2)}^{(x^2+y^2)} 21xy^2 dz dy dx
$$

45. Rectangular to spherical coordinates (a) Convert to spherical coordinates. Then **(b)** evaluate the new integral.

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} dz \, dy \, dx
$$

- **46. Rectangular, cylindrical, and spherical coordinates** Write an iterated triple integral for the integral of $f(x, y, z) = 6 + 4y$ over the region in the first octant bounded by the cone $z = \sqrt{x^2 + y^2}$, the cylinder $x^2 + y^2 = 1$, and the coordinate planes in **(a)** rectangular coordinates, **(b)** cylindrical coordinates, and **(c)** spherical coordinates. Then **(d)** find the integral of *ƒ* by evaluating one of the triple integrals.
- **47. Cylindrical to rectangular coordinates** Set up an integral in rectangular coordinates equivalent to the integral

$$
\int_0^{\pi/2} \int_1^{\sqrt{3}} \int_1^{\sqrt{4-r^2}} r^3 (\sin \theta \cos \theta) z^2 dz dr d\theta.
$$

Arrange the order of integration to be *z* first, then *y*, then *x*.

48. Rectangular to cylindrical coordinates The volume of a solid is 2 $\int \sqrt{2x-x^2} \int \sqrt{4-x^2-y^2}$

$$
\int_0^1 \int_0^{\sqrt{2x}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{2x}} dz dy dx.
$$

- **a.** Describe the solid by giving equations for the surfaces that form its boundary.
- **b.** Convert the integral to cylindrical coordinates but do not evaluate the integral.
- **49. Spherical versus cylindrical coordinates** Triple integrals involving spherical shapes do not always require spherical coordinates for convenient evaluation. Some calculations may be accomplished more easily with cylindrical coordinates. As a case in point, find the volume of the region bounded above by the

1140 Chapter 15: Multiple Integrals

sphere $x^2 + y^2 + z^2 = 8$ and below by the plane $z = 2$ by using **Substitutions (a)** cylindrical coordinates and **(b)** spherical coordinates.

- **50. Finding** I_z **in spherical coordinates** Find the moment of inertia about the *z*-axis of a solid of constant density $\delta = 1$ that is bounded above by the sphere $\rho = 2$ and below by the cone $\phi = \pi/3$ (spherical coordinates).
- **51. Moment of inertia of a "thick" sphere** Find the moment of inertia of a solid of constant density δ bounded by two concentric spheres of radii *a* and *b* ($a < b$) about a diameter.
- **52. Moment of inertia of an apple** Find the moment of inertia about the *z*-axis of a solid of density $\delta = 1$ enclosed by the spherical coordinate surface $\rho = 1 - \cos \phi$. The solid is the red curve rotated about the *z*-axis in the accompanying figure.

53. Show that if $u = x - y$ and $v = y$, then

$$
\int_0^\infty \int_0^x e^{-sx} f(x-y, y) dy dx = \int_0^\infty \int_0^\infty e^{-s(u+v)} f(u, v) du dv.
$$

54. What relationship must hold between the constants *a*, *b*, and *c* to make

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2+2bxy+cy^2)} dx dy = 1?
$$

(*Hint*: Let $s = \alpha x + \beta y$ and $t = \gamma x + \delta y$, where $ac - b^2$. Then $ax^2 + 2bxy + cy^2 = s^2 + t^2$. $s = \alpha x + \beta y$ and $t = \gamma x + \delta y$, where $(\alpha \delta - \beta \gamma)^2 =$