Chapter 15 Practice Exercises

Planar Regions of Integration

In Exercises 1–4, sketch the region of integration and evaluate the double integral.

1.
$$\int_{1}^{10} \int_{0}^{1/y} y e^{xy} dx dy$$

3.
$$\int_{0}^{3/2} \int_{-\sqrt{9-4t^2}}^{\sqrt{9-4t^2}} t ds dt$$

4.
$$\int_{0}^{1} \int_{\sqrt{y}}^{2-\sqrt{y}} xy dx dy$$

Reversing the Order of Integration

In Exercises 5–8, sketch the region of integration and write an equivalent integral with the order of integration reversed. Then evaluate both integrals.

5.
$$\int_{0}^{4} \int_{-\sqrt{4-y}}^{(y-4)/2} dx \, dy$$

6.
$$\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{x} \, dy \, dx$$

7.
$$\int_{0}^{3/2} \int_{-\sqrt{9-4y^{2}}}^{\sqrt{9-4y^{2}}} y \, dx \, dy$$

8.
$$\int_{0}^{2} \int_{0}^{4-x^{2}} 2x \, dy \, dx$$

Evaluating Double Integrals

Evaluate the integrals in Exercises 9–12.

9.
$$\int_{0}^{1} \int_{2y}^{2} 4\cos(x^{2}) dx dy$$
10.
$$\int_{0}^{2} \int_{y/2}^{1} e^{x^{2}} dx dy$$
11.
$$\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \frac{dy dx}{y^{4} + 1}$$
12.
$$\int_{0}^{1} \int_{\sqrt[3]{y}}^{1} \frac{2\pi \sin \pi x^{2}}{x^{2}} dx dy$$

Areas and Volumes

- 13. Area between line and parabola Find the area of the region enclosed by the line y = 2x + 4 and the parabola $y = 4 x^2$ in the *xy*-plane.
- 14. Area bounded by lines and parabola Find the area of the "triangular" region in the *xy*-plane that is bounded on the right by the parabola $y = x^2$, on the left by the line x + y = 2, and above by the line y = 4.
- 15. Volume of the region under a paraboloid Find the volume under the paraboloid $z = x^2 + y^2$ above the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the *xy*-plane.
- 16. Volume of the region under parabolic cylinder Find the volume under the parabolic cylinder $z = x^2$ above the region enclosed by the parabola $y = 6 x^2$ and the line y = x in the *xy*-plane.

Average Values

Find the average value of f(x, y) = xy over the regions in Exercises 17 and 18.

- 17. The square bounded by the lines x = 1, y = 1 in the first quadrant
- **18.** The quarter circle $x^2 + y^2 \le 1$ in the first quadrant

Masses and Moments

- **19.** Centroid Find the centroid of the "triangular" region bounded by the lines x = 2, y = 2 and the hyperbola xy = 2 in the *xy*-plane.
- **20. Centroid** Find the centroid of the region between the parabola $x + y^2 2y = 0$ and the line x + 2y = 0 in the *xy*-plane.
- **21. Polar moment** Find the polar moment of inertia about the origin of a thin triangular plate of constant density $\delta = 3$ bounded by the *y*-axis and the lines y = 2x and y = 4 in the *xy*-plane.
- **22.** Polar moment Find the polar moment of inertia about the center of a thin rectangular sheet of constant density $\delta = 1$ bounded by the lines

a. $x = \pm 2$, $y = \pm 1$ in the *xy*-plane

b. $x = \pm a$, $y = \pm b$ in the *xy*-plane.

(*Hint:* Find I_x . Then use the formula for I_x to find I_y and add the two to find I_0).

- **23.** Inertial moment and radius of gyration Find the moment of inertia and radius of gyration about the *x*-axis of a thin plate of constant density δ covering the triangle with vertices (0, 0), (3, 0), and (3, 2) in the *xy*-plane.
- 24. Plate with variable density Find the center of mass and the moments of inertia and radii of gyration about the coordinate axes of a thin plate bounded by the line y = x and the parabola $y = x^2$ in the *xy*-plane if the density is $\delta(x, y) = x + 1$.
- **25.** Plate with variable density Find the mass and first moments about the coordinate axes of a thin square plate bounded by the lines $x = \pm 1$, $y = \pm 1$ in the *xy*-plane if the density is $\delta(x, y) = x^2 + y^2 + 1/3$.
- 26. Triangles with same inertial moment and radius of gyration Find the moment of inertia and radius of gyration about the *x*-axis of a thin triangular plate of constant density δ whose base lies along the interval [0, *b*] on the *x*-axis and whose vertex lies on the line y = h above the *x*-axis. As you will see, it does not matter where on the line this vertex lies. All such triangles have the same moment of inertia and radius of gyration about the *x*-axis.

Polar Coordinates

Evaluate the integrals in Exercises 27 and 28 by changing to polar coordinates.

27.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2 \, dy \, dx}{(1 + x^2 + y^2)^2}$$

28.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln (x^2 + y^2 + 1) \, dx \, dy$$

29. Centroid Find the centroid of the region in the polar coordinate plane defined by the inequalities $0 \le r \le 3, -\pi/3 \le \theta \le \pi/3$.

- **30.** Centroid Find the centroid of the region in the first quadrant bounded by the rays $\theta = 0$ and $\theta = \pi/2$ and the circles r = 1 and r = 3.
- **31. a. Centroid** Find the centroid of the region in the polar coordinate plane that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1.
 - **b.** Sketch the region and show the centroid in your sketch.
- 32. a. Centroid Find the centroid of the plane region defined by the polar coordinate inequalities 0 ≤ r ≤ a, -α ≤ θ ≤ α (0 < α ≤ π). How does the centroid move as α → π⁻?
 - **b.** Sketch the region for $\alpha = 5\pi/6$ and show the centroid in your sketch.
- **33.** Integrating over lemniscate Integrate the function $f(x, y) = 1/(1 + x^2 + y^2)^2$ over the region enclosed by one loop of the lemniscate $(x^2 + y^2)^2 (x^2 y^2) = 0$.
- **34.** Integrate $f(x, y) = 1/(1 + x^2 + y^2)^2$ over
 - a. Triangular region The triangle with vertices $(0, 0), (1, 0), (1, \sqrt{3})$.
 - **b.** First quadrant The first quadrant of the *xy*-plane.

Triple Integrals in Cartesian Coordinates

Evaluate the integrals in Exercises 35–38.

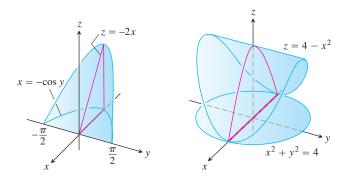
35.
$$\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \cos(x + y + z) \, dx \, dy \, dz$$

36.
$$\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} \int_{\ln 4}^{\ln 5} e^{(x+y+z)} \, dz \, dy \, dx$$

37.
$$\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{x+y} (2x - y - z) \, dz \, dy \, dx$$

38.
$$\int_{1}^{e} \int_{1}^{x} \int_{0}^{z} \frac{2y}{z^{3}} \, dy \, dz \, dx$$

39. Volume Find the volume of the wedge-shaped region enclosed on the side by the cylinder $x = -\cos y$, $-\pi/2 \le y \le \pi/2$, on the top by the plane z = -2x, and below by the *xy*-plane.



40. Volume Find the volume of the solid that is bounded above by the cylinder $z = 4 - x^2$, on the sides by the cylinder $x^2 + y^2 = 4$, and below by the *xy*-plane.

- **41.** Average value Find the average value of $f(x, y, z) = 30xz \sqrt{x^2 + y}$ over the rectangular solid in the first octant bounded by the coordinate planes and the planes x = 1, y = 3, z = 1.
- **42.** Average value Find the average value of ρ over the solid sphere $\rho \leq a$ (spherical coordinates).

Cylindrical and Spherical Coordinates

43. Cylindrical to rectangular coordinates Convert

$$\int_{0}^{2\pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4}-r^{2}} 3 \, dz \, r \, dr \, d\theta, \qquad r \ge 0$$

to (a) rectangular coordinates with the order of integration dz dx dy and (b) spherical coordinates. Then (c) evaluate one of the integrals.

44. Rectangular to cylindrical coordinates (a) Convert to cylindrical coordinates. Then (b) evaluate the new integral.

$$\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-(x^2+y^2)}^{(x^2+y^2)} 21xy^2 \, dz \, dy \, dx$$

45. Rectangular to spherical coordinates (a) Convert to spherical coordinates. Then (b) evaluate the new integral.

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} dz \, dy \, dx$$

- 46. Rectangular, cylindrical, and spherical coordinates Write an iterated triple integral for the integral of f(x, y, z) = 6 + 4y over the region in the first octant bounded by the cone $z = \sqrt{x^2 + y^2}$, the cylinder $x^2 + y^2 = 1$, and the coordinate planes in (a) rectangular coordinates, (b) cylindrical coordinates, and (c) spherical coordinates. Then (d) find the integral of f by evaluating one of the triple integrals.
- **47.** Cylindrical to rectangular coordinates Set up an integral in rectangular coordinates equivalent to the integral

$$\int_{0}^{\pi/2} \int_{1}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r^{3} (\sin \theta \cos \theta) z^{2} dz dr d\theta.$$

Arrange the order of integration to be *z* first, then *y*, then *x*.

48. Rectangular to cylindrical coordinates The volume of a solid is $\frac{1}{\sqrt{1-2}} + \sqrt{1-2}$

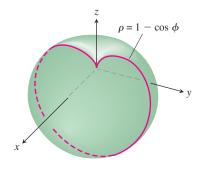
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} dz \, dy \, dx.$$

- **a.** Describe the solid by giving equations for the surfaces that form its boundary.
- **b.** Convert the integral to cylindrical coordinates but do not evaluate the integral.
- **49.** Spherical versus cylindrical coordinates Triple integrals involving spherical shapes do not always require spherical coordinates for convenient evaluation. Some calculations may be accomplished more easily with cylindrical coordinates. As a case in point, find the volume of the region bounded above by the

1140 Chapter 15: Multiple Integrals

sphere $x^2 + y^2 + z^2 = 8$ and below by the plane z = 2 by using (a) cylindrical coordinates and (b) spherical coordinates.

- **50.** Finding I_z in spherical coordinates Find the moment of inertia about the *z*-axis of a solid of constant density $\delta = 1$ that is bounded above by the sphere $\rho = 2$ and below by the cone $\phi = \pi/3$ (spherical coordinates).
- **51.** Moment of inertia of a "thick" sphere Find the moment of inertia of a solid of constant density δ bounded by two concentric spheres of radii *a* and *b* (*a* < *b*) about a diameter.
- **52.** Moment of inertia of an apple Find the moment of inertia about the *z*-axis of a solid of density $\delta = 1$ enclosed by the spherical coordinate surface $\rho = 1 \cos \phi$. The solid is the red curve rotated about the *z*-axis in the accompanying figure.



Substitutions

53. Show that if u = x - y and v = y, then

$$\int_0^\infty \int_0^x e^{-sx} f(x - y, y) \, dy \, dx = \int_0^\infty \int_0^\infty e^{-s(u+v)} f(u, v) \, du \, dv.$$

54. What relationship must hold between the constants a, b, and c to make

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} \, dx \, dy = 1?$$

(*Hint*: Let $s = \alpha x + \beta y$ and $t = \gamma x + \delta y$, where $(\alpha \delta - \beta \gamma)^2 = ac - b^2$. Then $ax^2 + 2bxy + cy^2 = s^2 + t^2$.)