16.6

Parametrized Surfaces

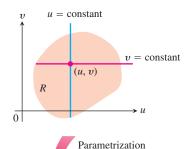
We have defined curves in the plane in three different ways:

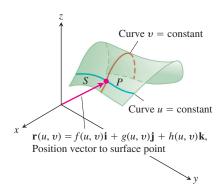
Explicit form: y = f(x)Implicit form: F(x, y) = 0

Parametric vector form: $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}, \quad a \le t \le b.$

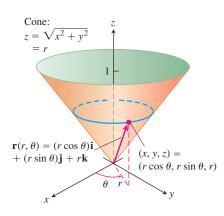
We have analogous definitions of surfaces in space:

Explicit form: z = f(x, y)Implicit form: F(x, y, z) = 0.


There is also a parametric form that gives the position of a point on the surface as a vector function of two variables. The present section extends the investigation of surface area and surface integrals to surfaces described parametrically.


Parametrizations of Surfaces

Let


$$\mathbf{r}(u,v) = f(u,v)\mathbf{i} + g(u,v)\mathbf{j} + h(u,v)\mathbf{k}$$
 (1)

be a continuous vector function that is defined on a region R in the uv-plane and one-toone on the interior of R (Figure 16.50). We call the range of \mathbf{r} the **surface** S defined or traced by \mathbf{r} . Equation (1) together with the domain R constitute a **parametrization** of the surface. The variables u and v are the **parameters**, and R is the **parameter domain**.

FIGURE 16.50 A parametrized surface *S* expressed as a vector function of two variables defined on a region *R*.

FIGURE 16.51 The cone in Example 1 can be parametrized using cylindrical coordinates.

To simplify our discussion, we take R to be a rectangle defined by inequalities of the form $a \le u \le b$, $c \le v \le d$. The requirement that \mathbf{r} be one-to-one on the interior of R ensures that S does not cross itself. Notice that Equation (1) is the vector equivalent of *three* parametric equations:

$$x = f(u, v),$$
 $y = g(u, v),$ $z = h(u, v).$

EXAMPLE 1 Parametrizing a Cone

Find a parametrization of the cone

$$z = \sqrt{x^2 + y^2}, \qquad 0 \le z \le 1.$$

Solution Here, cylindrical coordinates provide everything we need. A typical point (x,y,z) on the cone (Figure 16.51) has $x=r\cos\theta$, $y=r\sin\theta$, and $z=\sqrt{x^2+y^2}=r$, with $0\le r\le 1$ and $0\le \theta\le 2\pi$. Taking u=r and $v=\theta$ in Equation (1) gives the parametrization

$$\mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + r\mathbf{k}, \qquad 0 \le r \le 1, \quad 0 \le \theta \le 2\pi.$$

EXAMPLE 2 Parametrizing a Sphere

Find a parametrization of the sphere $x^2 + y^2 + z^2 = a^2$.

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on the sphere (Figure 16.52) has $x = a \sin \phi \cos \theta$, $y = a \sin \phi \sin \theta$, and $z = a \cos \phi$, $0 \le \phi \le \pi$, $0 \le \theta \le 2\pi$. Taking $u = \phi$ and $v = \theta$ in Equation (1) gives the parametrization

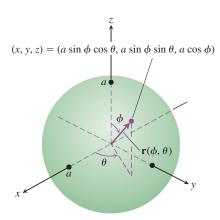
$$\mathbf{r}(\phi, \theta) = (a \sin \phi \cos \theta)\mathbf{i} + (a \sin \phi \sin \theta)\mathbf{j} + (a \cos \phi)\mathbf{k},$$
$$0 \le \phi \le \pi, \quad 0 \le \theta \le 2\pi.$$

EXAMPLE 3 Parametrizing a Cylinder

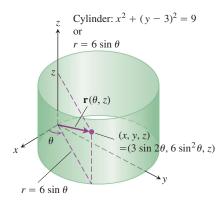
Find a parametrization of the cylinder

$$x^2 + (y - 3)^2 = 9, \quad 0 \le z \le 5.$$

Solution In cylindrical coordinates, a point (x, y, z) has $x = r \cos \theta$, $y = r \sin \theta$, and z = z. For points on the cylinder $x^2 + (y - 3)^2 = 9$ (Figure 16.53), the equation is the same as the polar equation for the cylinder's base in the *xy*-plane:


$$x^{2} + (y^{2} - 6y + 9) = 9$$
$$r^{2} - 6r\sin\theta = 0$$

or


$$r = 6 \sin \theta$$
, $0 \le \theta \le \pi$.

A typical point on the cylinder therefore has

$$x = r \cos \theta = 6 \sin \theta \cos \theta = 3 \sin 2\theta$$
$$y = r \sin \theta = 6 \sin^2 \theta$$
$$z = z.$$

FIGURE 16.52 The sphere in Example 2 can be parametrized using spherical coordinates.

FIGURE 16.53 The cylinder in Example 3 can be parametrized using cylindrical coordinates.

Taking $u = \theta$ and v = z in Equation (1) gives the parametrization

$$\mathbf{r}(\theta, z) = (3\sin 2\theta)\mathbf{i} + (6\sin^2 \theta)\mathbf{j} + z\mathbf{k}, \ 0 \le \theta \le \pi, \quad 0 \le z \le 5.$$

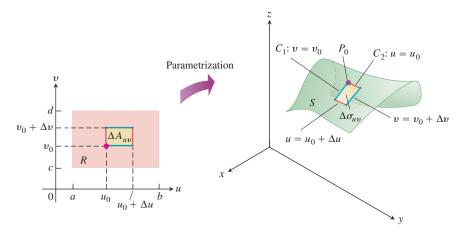
Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on the parametrization

$$\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}, \quad a \le u \le b, \quad c \le v \le d.$$

We need S to be smooth for the construction we are about to carry out. The definition of smoothness involves the partial derivatives of \mathbf{r} with respect to u and v:

$$\mathbf{r}_{u} = \frac{\partial \mathbf{r}}{\partial u} = \frac{\partial f}{\partial u}\mathbf{i} + \frac{\partial g}{\partial u}\mathbf{j} + \frac{\partial h}{\partial u}\mathbf{k}$$


$$\mathbf{r}_{v} = \frac{\partial \mathbf{r}}{\partial v} = \frac{\partial f}{\partial v} \mathbf{i} + \frac{\partial g}{\partial v} \mathbf{j} + \frac{\partial h}{\partial v} \mathbf{k}.$$

DEFINITION Smooth Parametrized Surface

A parametrized surface $\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}$ is **smooth** if \mathbf{r}_u and \mathbf{r}_v are continuous and $\mathbf{r}_u \times \mathbf{r}_v$ is never zero on the parameter domain.

The condition that $\mathbf{r}_u \times \mathbf{r}_v$ is never the zero vector in the definition of smoothness means that the two vectors \mathbf{r}_u and \mathbf{r}_v are nonzero and never lie along the same line, so they always determine a plane tangent to the surface.

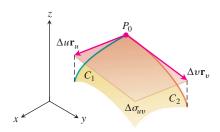

Now consider a small rectangle ΔA_{uv} in R with sides on the lines $u = u_0$, $u = u_0 + \Delta u$, $v = v_0$ and $v = v_0 + \Delta v$ (Figure 16.54). Each side of ΔA_{uv} maps to a curve on the surface S, and together these four curves bound a "curved area element" $\Delta \sigma_{uv}$. In the notation of the figure, the side $v = v_0$ maps to curve C_1 , the side $v = v_0$ maps to v_0 , and their common vertex v_0 , v_0 maps to v_0 .

FIGURE 16.54 A rectangular area element ΔA_{uv} in the uv-plane maps onto a curved area element $\Delta \sigma_{uv}$ on S.

1195

FIGURE 16.55 A magnified view of a surface area element $\Delta \sigma_{uv}$.

FIGURE 16.56 The parallelogram determined by the vectors $\Delta u \mathbf{r}_u$ and $\Delta v \mathbf{r}_v$ approximates the surface area element $\Delta \sigma_{uv}$.

Figure 16.55 shows an enlarged view of $\Delta \sigma_{uv}$. The vector $\mathbf{r}_u(u_0, v_0)$ is tangent to C_1 at P_0 . Likewise, $\mathbf{r}_v(u_0, v_0)$ is tangent to C_2 at P_0 . The cross product $\mathbf{r}_u \times \mathbf{r}_v$ is normal to the surface at P_0 . (Here is where we begin to use the assumption that S is smooth. We want to be sure that $\mathbf{r}_u \times \mathbf{r}_v \neq \mathbf{0}$.)

We next approximate the surface element $\Delta \sigma_{uv}$ by the parallelogram on the tangent plane whose sides are determined by the vectors $\Delta u \mathbf{r}_u$ and $\Delta v \mathbf{r}_v$ (Figure 16.56). The area of this parallelogram is

$$|\Delta u \mathbf{r}_u \times \Delta v \mathbf{r}_v| = |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v. \tag{2}$$

A partition of the region R in the uv-plane by rectangular regions ΔA_{uv} generates a partition of the surface S into surface area elements $\Delta \sigma_{uv}$. We approximate the area of each surface element $\Delta \sigma_{uv}$ by the parallelogram area in Equation (2) and sum these areas together to obtain an approximation of the area of S:

$$\sum_{u} \sum_{v} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \ \Delta u \ \Delta v. \tag{3}$$

As Δu and Δv approach zero independently, the continuity of \mathbf{r}_u and \mathbf{r}_v guarantees that the sum in Equation (3) approaches the double integral $\int_c^d \int_a^b |\mathbf{r}_u \times \mathbf{r}_v| \ du \ dv$. This double integral defines the area of the surface S and agrees with previous definitions of area, though it is more general.

DEFINITION Area of a Smooth Surface

The area of the smooth surface

$$\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}, \quad a \le u \le b, \quad c \le v \le d$$

is

$$A = \int_{c}^{d} \int_{a}^{b} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \ du \ dv. \tag{4}$$

As in Section 16.5, we can abbreviate the integral in Equation (4) by writing $d\sigma$ for $|\mathbf{r}_u \times \mathbf{r}_v| du dv$.

Surface Area Differential and Differential Formula for Surface Area

$$d\sigma = |\mathbf{r}_u \times \mathbf{r}_v| \ du \ dv \qquad \iint_{\mathcal{C}} d\sigma \qquad (5)$$

Surface area differential

Differential formula for surface area

EXAMPLE 4 Finding Surface Area (Cone)

Find the surface area of the cone in Example 1 (Figure 16.51).

Solution In Example 1, we found the parametrization

$$\mathbf{r}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + r\mathbf{k}, \qquad 0 \le r \le 1, \quad 0 \le \theta \le 2\pi.$$

To apply Equation (4), we first find $\mathbf{r}_r \times \mathbf{r}_\theta$:

$$\mathbf{r}_{r} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 1 \\ -r \sin \theta & r \cos \theta & 0 \end{vmatrix}$$
$$= -(r \cos \theta) \mathbf{i} - (r \sin \theta) \mathbf{j} + \underbrace{(r \cos^{2} \theta + r \sin^{2} \theta) \mathbf{k}}_{r}.$$

Thus, $|\mathbf{r}_r \times \mathbf{r}_\theta| = \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta + r^2} = \sqrt{2r^2} = \sqrt{2}r$. The area of the cone is

$$A = \int_0^{2\pi} \int_0^1 |\mathbf{r}_r \times \mathbf{r}_\theta| dr d\theta \qquad \text{Equation (4) with } u = r, v = \theta$$
$$= \int_0^{2\pi} \int_0^1 \sqrt{2} r dr d\theta = \int_0^{2\pi} \frac{\sqrt{2}}{2} d\theta = \frac{\sqrt{2}}{2} (2\pi) = \pi \sqrt{2} \text{ units squared.}$$

EXAMPLE 5 Finding Surface Area (Sphere)

Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

$$\mathbf{r}(\phi, \theta) = (a \sin \phi \cos \theta)\mathbf{i} + (a \sin \phi \sin \theta)\mathbf{j} + (a \cos \phi)\mathbf{k},$$
$$0 \le \phi \le \pi, \quad 0 \le \theta \le 2\pi.$$

For $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$, we get

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a\cos\phi\cos\theta & a\cos\phi\sin\theta & -a\sin\phi \\ -a\sin\phi\sin\theta & a\sin\phi\cos\theta & 0 \end{vmatrix}$$
$$= (a^{2}\sin^{2}\phi\cos\theta)\mathbf{i} + (a^{2}\sin^{2}\phi\sin\theta)\mathbf{j} + (a^{2}\sin\phi\cos\phi)\mathbf{k}$$

Thus,

$$|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = \sqrt{a^4 \sin^4 \phi \cos^2 \theta + a^4 \sin^4 \phi \sin^2 \theta + a^4 \sin^2 \phi \cos^2 \phi}$$
$$= \sqrt{a^4 \sin^4 \phi + a^4 \sin^2 \phi \cos^2 \phi} = \sqrt{a^4 \sin^2 \phi (\sin^2 \phi + \cos^2 \phi)}$$
$$= a^2 \sqrt{\sin^2 \phi} = a^2 \sin \phi,$$

since $\sin \phi \ge 0$ for $0 \le \phi \le \pi$. Therefore, the area of the sphere is

$$A = \int_0^{2\pi} \int_0^{\pi} a^2 \sin \phi \, d\phi \, d\theta$$
$$= \int_0^{2\pi} \left[-a^2 \cos \phi \right]_0^{\pi} d\theta = \int_0^{2\pi} 2a^2 \, d\theta = 4\pi a^2 \text{ units squared.}$$

This agrees with the well-known formula for the surface area of a sphere.

Surface Integrals

Having found a formula for calculating the area of a parametrized surface, we can now integrate a function over the surface using the parametrized form.

DEFINITION Parametric Surface Integral

If *S* is a smooth surface defined parametrically as $\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}$, $a \le u \le b$, $c \le v \le d$, and G(x, y, z) is a continuous function defined on *S*, then the **integral of** *G* **over** *S* is

$$\iint\limits_{S} G(x,y,z) d\sigma = \int_{c}^{d} \int_{a}^{b} G(f(u,v),g(u,v),h(u,v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| du dv.$$

EXAMPLE 6 Integrating Over a Surface Defined Parametrically

Integrate $G(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.

Solution Continuing the work in Examples 1 and 4, we have $|\mathbf{r}_r \times \mathbf{r}_\theta| = \sqrt{2}r$ and

$$\iint_{S} x^{2} d\sigma = \int_{0}^{2\pi} \int_{0}^{1} (r^{2} \cos^{2} \theta) (\sqrt{2}r) dr d\theta \qquad x = r \cos \theta$$

$$= \sqrt{2} \int_{0}^{2\pi} \int_{0}^{1} r^{3} \cos^{2} \theta dr d\theta$$

$$= \frac{\sqrt{2}}{4} \int_{0}^{2\pi} \cos^{2} \theta d\theta = \frac{\sqrt{2}}{4} \left[\frac{\theta}{2} + \frac{1}{4} \sin 2\theta \right]_{0}^{2\pi} = \frac{\pi \sqrt{2}}{4}.$$

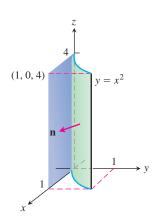
EXAMPLE 7 Finding Flux

Find the flux of $\mathbf{F} = yz\mathbf{i} + x\mathbf{j} - z^2\mathbf{k}$ outward through the parabolic cylinder $y = x^2$, $0 \le x \le 1$, $0 \le z \le 4$ (Figure 16.57).

Solution On the surface we have x = x, $y = x^2$, and z = z, so we automatically have the parametrization $\mathbf{r}(x, z) = x\mathbf{i} + x^2\mathbf{j} + z\mathbf{k}$, $0 \le x \le 1$, $0 \le z \le 4$. The cross product of tangent vectors is

$$\mathbf{r}_x \times \mathbf{r}_z = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2x & 0 \\ 0 & 0 & 1 \end{vmatrix} = 2x\mathbf{i} - \mathbf{j}.$$

The unit normal pointing outward from the surface is


$$\mathbf{n} = \frac{\mathbf{r}_x \times \mathbf{r}_z}{|\mathbf{r}_x \times \mathbf{r}_z|} = \frac{2x\mathbf{i} - \mathbf{j}}{\sqrt{4x^2 + 1}}.$$

On the surface, $y = x^2$, so the vector field there is

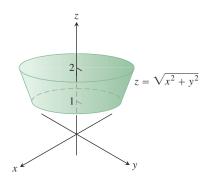
$$\mathbf{F} = yz\mathbf{i} + x\mathbf{j} - z^2\mathbf{k} = x^2z\mathbf{i} + x\mathbf{j} - z^2\mathbf{k}.$$

Thus,

$$\mathbf{F} \cdot \mathbf{n} = \frac{1}{\sqrt{4x^2 + 1}} ((x^2 z)(2x) + (x)(-1) + (-z^2)(0))$$
$$= \frac{2x^3 z - x}{\sqrt{4x^2 + 1}}.$$

FIGURE 16.57 Finding the flux through the surface of a parabolic cylinder (Example 7).

The flux of F outward through the surface is


$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int_{0}^{4} \int_{0}^{1} \frac{2x^{3}z - x}{\sqrt{4x^{2} + 1}} \, |\mathbf{r}_{x} \times \mathbf{r}_{z}| \, dx \, dz$$

$$= \int_{0}^{4} \int_{0}^{1} \frac{2x^{3}z - x}{\sqrt{4x^{2} + 1}} \sqrt{4x^{2} + 1} \, dx \, dz$$

$$= \int_{0}^{4} \int_{0}^{1} (2x^{3}z - x) \, dx \, dz = \int_{0}^{4} \left[\frac{1}{2} x^{4}z - \frac{1}{2} x^{2} \right]_{x=0}^{x=1} dz$$

$$= \int_{0}^{4} \frac{1}{2} (z - 1) \, dz = \frac{1}{4} (z - 1)^{2} \Big]_{0}^{4}$$

$$= \frac{1}{4} (9) - \frac{1}{4} (1) = 2.$$

FIGURE 16.58 The cone frustum formed when the cone $z = \sqrt{x^2 + y^2}$ is cut by the planes z = 1 and z = 2 (Example 8).

EXAMPLE 8 Finding a Center of Mass

Find the center of mass of a thin shell of constant density δ cut from the cone $z = \sqrt{x^2 + y^2}$ by the planes z = 1 and z = 2 (Figure 16.58).

Solution The symmetry of the surface about the z-axis tells us that $\bar{x} = \bar{y} = 0$. We find $\bar{z} = M_{xy}/M$. Working as in Examples 1 and 4, we have

$$\mathbf{r}(r,\theta) = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + r\mathbf{k}, \qquad 1 \le r \le 2, \quad 0 \le \theta \le 2\pi,$$

and

$$|\mathbf{r}_r \times \mathbf{r}_\theta| = \sqrt{2}r.$$

Therefore.

$$M = \iint_{S} \delta d\sigma = \int_{0}^{2\pi} \int_{1}^{2} \delta \sqrt{2}r \, dr \, d\theta$$

$$= \delta \sqrt{2} \int_{0}^{2\pi} \left[\frac{r^{2}}{2} \right]_{1}^{2} d\theta = \delta \sqrt{2} \int_{0}^{2\pi} \left(2 - \frac{1}{2} \right) d\theta$$

$$= \delta \sqrt{2} \left[\frac{3\theta}{2} \right]_{0}^{2\pi} = 3\pi \delta \sqrt{2}$$

$$M_{xy} = \iint_{S} \delta z \, d\sigma = \int_{0}^{2\pi} \int_{1}^{2} \delta r \sqrt{2}r \, dr \, d\theta$$

$$= \delta \sqrt{2} \int_{0}^{2\pi} \int_{1}^{2} r^{2} \, dr \, d\theta = \delta \sqrt{2} \int_{0}^{2\pi} \left[\frac{r^{3}}{3} \right]_{1}^{2} d\theta$$

$$= \delta \sqrt{2} \int_{0}^{2\pi} \frac{7}{3} \, d\theta = \frac{14}{3} \pi \delta \sqrt{2}$$

$$\bar{z} = \frac{M_{xy}}{M} = \frac{14\pi \delta \sqrt{2}}{3(3\pi \delta \sqrt{2})} = \frac{14}{9}.$$

The shell's center of mass is the point (0, 0, 14/9).