
1192 Chapter 16: Integration in Vector Fields

Parametrized Surfaces

We have defined curves in the plane in three different ways:

Explicit form:

Implicit form:

Parametric vector form:

We have analogous definitions of surfaces in space:

Explicit form:

Implicit form:

There is also a parametric form that gives the position of a point on the surface as a vector
function of two variables. The present section extends the investigation of surface area and
surface integrals to surfaces described parametrically.

Parametrizations of Surfaces

Let
(1)

be a continuous vector function that is defined on a region R in the uy-plane and one-to-
one on the interior of R (Figure 16.50). We call the range of r the surface S defined or
traced by r. Equation (1) together with the domain R constitute a parametrization of
the surface. The variables u and y are the parameters, and R is the parameter domain.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk

Fsx, y, zd = 0.

z = ƒsx, yd

rstd = ƒstdi + gstdj,  a … t … b.

Fsx, yd = 0

y = ƒsxd
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To simplify our discussion, we take R to be a rectangle defined by inequalities of the form
The requirement that r be one-to-one on the interior of R ensures

that S does not cross itself. Notice that Equation (1) is the vector equivalent of three
parametric equations:

EXAMPLE 1 Parametrizing a Cone

Find a parametrization of the cone

Solution Here, cylindrical coordinates provide everything we need. A typical point

(x, y, z) on the cone (Figure 16.51) has and 
with and Taking and in Equation (1) gives the
parametrization

EXAMPLE 2 Parametrizing a Sphere

Find a parametrization of the sphere 

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on the
sphere (Figure 16.52) has and 

Taking and in Equation (1) gives the
parametrization

EXAMPLE 3 Parametrizing a Cylinder

Find a parametrization of the cylinder

Solution In cylindrical coordinates, a point (x, y, z) has and
For points on the cylinder (Figure 16.53), the equation is the

same as the polar equation for the cylinder’s base in the xy-plane:

or

A typical point on the cylinder therefore has

 z = z.

 y = r sin u = 6 sin2 u

 x = r cos u = 6 sin u cos u = 3 sin 2u

r = 6 sin u,  0 … u … p.

 r2
- 6r sin u = 0

 x2
+ s y2

- 6y + 9d = 9

x2
+ s y - 3d2

= 9z = z.
x = r cos u, y = r sin u,

x2
+ sy - 3d2

= 9, 0 … z … 5.

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

y = uu = f0 … u … 2p.0 … f … p,
z = a cos f,x = a sin f cos u, y = a sin f sin u,

x2
+ y2

+ z2
= a2.

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.

y = uu = r0 … u … 2p .0 … r … 1
z = 2x2

+ y2
= r,x = r cos u, y = r sin u,

z = 2x2
+ y2,  0 … z … 1.

x = ƒsu, yd,  y = gsu, yd,  z = hsu, yd.

a … u … b, c … y … d.
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Parametrization

S P

u � constant

y � constant
(u, y)

Curve y � constant

Curve u � constant

r(u, y) � f (u, y)i � g(u, y)j � h(u, y)k,
Position vector to surface point

FIGURE 16.50 A parametrized surface S
expressed as a vector function of two
variables defined on a region R.

z

x y
r

1

(x, y, z) �
(r cos �, r sin �, r)

�

r(r, �) � (r cos �)i
� (r sin �) j � rk

Cone:
z � �x2 � y2

  � r

FIGURE 16.51 The cone in Example 1
can be parametrized using cylindrical
coordinates.
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Taking and in Equation (1) gives the parametrization

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on
the parametrization

We need S to be smooth for the construction we are about to carry out. The definition of
smoothness involves the partial derivatives of r with respect to u and y:

 ry =

0r
0y

=

0ƒ
0y

 i +

0g
0y

 j +

0h
0y

 k.

 ru =
0r
0u =

0ƒ
0u i +

0g
0u j +

0h
0u k

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,    a … u … b,  c … y … d.

rsu, zd = s3 sin 2udi + s6 sin2 udj + zk,  0 … u … p,  0 … z … 5.

y = zu = u
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(x, y, z) � (a sin � cos �, a sin � sin �, a cos �)

FIGURE 16.52 The sphere in Example 2
can be parametrized using spherical
coordinates.

z

x

y

z

r � 6 sin �

�
(x, y, z)
�(3 sin 2�, 6 sin2 �, z)

r(�, z)

Cylinder: x2 � ( y � 3)2 � 9
or
r � 6 sin �

FIGURE 16.53 The cylinder in Example
3 can be parametrized using cylindrical
coordinates.

DEFINITION Smooth Parametrized Surface
A parametrized surface is smooth if

and are continuous and is never zero on the parameter domain.ru * ryryru

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk

The condition that is never the zero vector in the definition of smoothness
means that the two vectors and are nonzero and never lie along the same line, so they
always determine a plane tangent to the surface.

Now consider a small rectangle in R with sides on the lines 
and (Figure 16.54). Each side of maps to a curve on the sur-

face S, and together these four curves bound a “curved area element” In the notation
of the figure, the side maps to curve the side maps to and their
common vertex maps to P0.su0, y0d

C2,u = u0C1,y = y0

¢suy.
¢Auyy = y0 + ¢yy = y0

u = u0, u = u0 + ¢u,¢Auy

ryru

ru * ry

 

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0 u0 � ∆u

∆Auy

y0 � ∆y

y0
u � u0 � ∆u

y � y0 � ∆y∆�uy

P0C1: y � y0 C2: u � u0

y

FIGURE 16.54 A rectangular area element in the uy-plane maps onto a curved
area element on S.¢suy

¢Auy
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Figure 16.55 shows an enlarged view of The vector is tangent to at
Likewise, is tangent to at The cross product is normal to the

surface at (Here is where we begin to use the assumption that S is smooth. We want to
be sure that )

We next approximate the surface element by the parallelogram on the tangent
plane whose sides are determined by the vectors and (Figure 16.56). The area
of this parallelogram is

(2)

A partition of the region R in the uy-plane by rectangular regions generates a partition
of the surface S into surface area elements We approximate the area of each surface
element by the parallelogram area in Equation (2) and sum these areas together to
obtain an approximation of the area of S:

(3)

As and approach zero independently, the continuity of and guarantees that the
sum in Equation (3) approaches the double integral This double
integral defines the area of the surface S and agrees with previous definitions of area,
though it is more general.

1d
c  1b

a  ƒ ru * ry ƒ  du dy.
ryru¢y¢u

a
u
a
y

ƒ ru * ry ƒ  ¢u ¢y.

¢suy

¢suy.
¢Auy

ƒ ¢uru * ¢yry ƒ = ƒ ru * ry ƒ  ¢u ¢y.

¢yry¢uru

¢suy

ru * ry Z 0.
P0.

ru * ryP0.C2rysu0, y0dP0.
C1rusu0, y0d¢suy.
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yx

z

ru � ry

ru ry

P0

C1: y � y0

∆�uy

C2: u � u0

FIGURE 16.55 A magnified view of a
surface area element ¢suy.

z

x y
∆�uy

C2

C1
∆yry

P0

∆uru

FIGURE 16.56 The parallelogram
determined by the vectors and 
approximates the surface area element
¢suy.

¢yry¢uru

DEFINITION Area of a Smooth Surface
The area of the smooth surface

is

(4)A = L
d

c
 L

b

a
 ƒ ru * ry ƒ  du dy.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,  a … u … b,  c … y … d

As in Section 16.5, we can abbreviate the integral in Equation (4) by writing for
ƒ ru * ry ƒ  du dy.

ds

Surface Area Differential and Differential Formula for Surface Area

(5)

Surface area Differential formula
differential for surface area

ds = ƒ ru * ry ƒ  du dy  6
S

 ds

EXAMPLE 4 Finding Surface Area (Cone)

Find the surface area of the cone in Example 1 (Figure 16.51).

Solution In Example 1, we found the parametrization

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.
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To apply Equation (4), we first find 

r

Thus, The area of the cone
is

EXAMPLE 5 Finding Surface Area (Sphere)

Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

For we get

Thus,

since for Therefore, the area of the sphere is

This agrees with the well-known formula for the surface area of a sphere.

Surface Integrals

Having found a formula for calculating the area of a parametrized surface, we can now
integrate a function over the surface using the parametrized form.

 = L
2p

0
 c-a2 cos f d

0

p

 du = L
2p

0
 2a2 du = 4pa2 units squared.

 A = L
2p

0
 L
p

0
 a2 sin f df du

0 … f … p .sin f Ú 0

 = a22sin2 f = a2 sin f,

 = 2a4 sin4 f + a4 sin2 f cos2 f = 2a4 sin2 f ssin2 f + cos2 fd

 ƒ rf * ru ƒ = 2a4 sin4 f cos2 u + a4 sin4 f sin2 u + a4 sin2 f cos2 f

 = sa2 sin2 f cos udi + sa2 sin2 f sin udj + sa2 sin f cos fdk.

 rf * ru = 3 i j k

a cos f cos u a cos f sin u - a sin f

-a sin f sin u a sin f cos u 0

3rf * ru,

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

 = L
2p

0
 L

1

0
 22 r dr du = L

2p

0
 
22
2

 du =

22
2

 s2pd = p22 units squared.

 A = L
2p

0
 L

1

0
 ƒ rr * ru ƒ  dr du

ƒ rr * ru ƒ = 2r2 cos2 u + r2 sin2 u + r2
= 22r2

= 22r.

('''')''''*

 = -sr cos udi - sr sin udj + sr cos2 u + r sin2 udk.

 rr * ru = 3 i j k

cos u sin u 1

-r sin u r cos u 0

3rr * ru :
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Equation (4) with u = r, y = u
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EXAMPLE 6 Integrating Over a Surface Defined Parametrically

Integrate over the cone 

Solution Continuing the work in Examples 1 and 4, we have and

EXAMPLE 7 Finding Flux

Find the flux of outward through the parabolic cylinder 
(Figure 16.57).

Solution On the surface we have and so we automatically have
the parametrization The cross product
of tangent vectors is

The unit normal pointing outward from the surface is

On the surface, so the vector field there is

Thus,

 =

2x3z - x24x 2
+ 1

.

 F # n =
124x2

+ 1
 ssx2zds2xd + sxds -1d + s -z2ds0dd

F = yzi + xj - z2k = x2zi + xj - z2k.

y = x2 ,

n =

rx * rz

ƒ rx * rz ƒ

=

2x i - j24x2
+ 1

.

rx * rz = 3 i j k

1 2x 0

0 0 1

3 = 2x i - j.

rsx, zd = x i + x2j + zk, 0 … x … 1, 0 … z … 4.
z = z,x = x, y = x2,

0 … x … 1, 0 … z … 4
y = x2,F = yzi + xj - z2k

 =

22
4

 L
2p

0
 cos2 u du =

22
4

 cu
2

+
1
4

 sin 2u d
0

2p

=

p22
4

.

 = 22L
2p

0
 L

1

0
 r3 cos2 u dr du

6
S

 x2 ds = L
2p

0
 L

1

0
 Ar2 cos2 u B A22r B  dr du

ƒ rr * ru ƒ = 22r

z = 2x2
+ y2, 0 … z … 1.Gsx, y, zd = x2
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DEFINITION Parametric Surface Integral
If S is a smooth surface defined parametrically as 

and G(x, y, z) is a continuous function defined
on S, then the integral of G over S is

6
S

 Gsx, y, zd ds = L
d

c
 L

b

a
 Gsƒsu, yd, gsu, yd, hsu, ydd ƒ ru * ry ƒ  du dy.

hsu, ydk, a … u … b, c … y … d,
rsu, yd = ƒsu, ydi + gsu, ydj +

x = r cos u

z

x

y

n

1

1

4

(1, 0, 4) y � x2

FIGURE 16.57 Finding the flux through
the surface of a parabolic cylinder
(Example 7).
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The flux of F outward through the surface is

EXAMPLE 8 Finding a Center of Mass

Find the center of mass of a thin shell of constant density cut from the cone
by the planes and (Figure 16.58).

Solution The symmetry of the surface about the z-axis tells us that We
find Working as in Examples 1 and 4, we have

and

Therefore,

The shell’s center of mass is the point (0, 0, 14 9).>
 z =

Mxy

M
=

14pd22

3 A3pd22 B =
14
9

.

 = d22L
2p

0
 
7
3

 du =
14
3

 pd22

 = d22L
2p

0
 L

2

1
 r 2 dr du = d22L

2p

0
 cr 3

3
d

1

2

 du

 Mxy = 6
S

 dz ds = L
2p

0
 L

2

1
 dr22r dr du

 = d22 c3u
2
d

0

2p

= 3pd22

 = d22L
2p

0
 cr 2

2
d

1

2

 du = d22L
2p

0
 a2 -

1
2
b  du

 M = 6
S

 d ds = L
2p

0
 L

2

1
 d22r dr du

ƒ rr * ru ƒ = 22r.

rsr, ud = r cos ui + r sin uj + rk,  1 … r … 2,  0 … u … 2p,

z = Mxy >M .
x = y = 0 .

z = 2z = 1z = 2x2
+ y2

d

 =
1
4

 s9d -
1
4

 s1d = 2.

 = L
4

0
 
1
2

 sz - 1d dz =
1
4

 sz - 1d2 d
0

4

 = L
4

0
 L

1

0
 s2x3z - xd dx dz = L

4

0
 c1

2
 x4z -

1
2

 x2 d
x = 0

x = 1

 dz

 = L
4

0
 L

1

0
 

2x3z - x24x2
+ 1
24x2

+ 1 dx dz

 6
S

 F # n ds = L
4

0
 L

1

0
 

2x3z - x24x2
+ 1

 ƒ rx * rz ƒ  dx dz
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y

z

x

1

2
z � �x2 � y2

FIGURE 16.58 The cone frustum formed
when the cone is cut by
the planes and (Example 8).z = 2z = 1

z = 2x2
+ y2
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