APPENDICES

A.1

Mathematical Induction

Many formulas, like

$$
1 + 2 + \cdots + n = \frac{n(n+1)}{2},
$$

can be shown to hold for every positive integer *n* by applying an axiom called the *mathematical induction principle*. A proof that uses this axiom is called a *proof by mathematical induction* or a *proof by induction*.

The steps in proving a formula by induction are the following:

- **1.** Check that the formula holds for $n = 1$.
- **2.** Prove that if the formula holds for any positive integer $n = k$, then it also holds for the next integer, $n = k + 1$.

The induction axiom says that once these steps are completed, the formula holds for all positive integers *n*. By Step 1 it holds for $n = 1$. By Step 2 it holds for $n = 2$, and therefore by Step 2 also for $n = 3$, and by Step 2 again for $n = 4$, and so on. If the first domino falls, and the *k*th domino always knocks over the $(k + 1)$ st when it falls, all the dominoes fall.

From another point of view, suppose we have a sequence of statements S_1 , S_2, \ldots, S_n, \ldots , one for each positive integer. Suppose we can show that assuming any one of the statements to be true implies that the next statement in line is true. Suppose that we can also show that S_1 is true. Then we may conclude that the statements are true from S_1 on.

EXAMPLE 1 Use mathematical induction to prove that for every positive integer *n*,

$$
1 + 2 + \cdots + n = \frac{n(n+1)}{2}.
$$

Solution We accomplish the proof by carrying out the two steps above.

1. The formula holds for $n = 1$ because

$$
1 = \frac{1(1 + 1)}{2}.
$$

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

2. If the formula holds for $n = k$, does it also hold for $n = k + 1$? The answer is yes, as we now show. If

$$
1 + 2 + \cdots + k = \frac{k(k+1)}{2},
$$

then

$$
1 + 2 + \dots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1) = \frac{k^2 + k + 2k + 2}{2}
$$

$$
= \frac{(k + 1)(k + 2)}{2} = \frac{(k + 1)((k + 1) + 1)}{2}.
$$

The last expression in this string of equalities is the expression $n(n + 1)/2$ for $n = (k + 1)$.

The mathematical induction principle now guarantees the original formula for all positive integers *n*.

In Example 4 of Section 5.2 we gave another proof for the formula giving the sum of the first *n* integers. However, proof by mathematical induction is more general. It can be used to find the sums of the squares and cubes of the first *n* integers (Exercises 9 and 10). Here is another example.

EXAMPLE 2 Show by mathematical induction that for all positive integers *n*,

$$
\frac{1}{2^1} + \frac{1}{2^2} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n}.
$$

Solution We accomplish the proof by carrying out the two steps of mathematical induction.

1. The formula holds for $n = 1$ because

$$
\frac{1}{2^1} = 1 - \frac{1}{2^1}.
$$

2. If

$$
\frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k},
$$

then

$$
\frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}} = 1 - \frac{1 \cdot 2}{2^k \cdot 2} + \frac{1}{2^{k+1}}
$$

$$
= 1 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}}.
$$

Thus, the original formula holds for $n = (k + 1)$ whenever it holds for $n = k$.

With these steps verified, the mathematical induction principle now guarantees the formula for every positive integer *n*.

Other Starting Integers

Instead of starting at $n = 1$ some induction arguments start at another integer. The steps for such an argument are as follows.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

- 1. Check that the formula holds for $n = n_1$ (the first appropriate integer).
- 2. Prove that if the formula holds for any integer $n = k \ge n_1$, then it also holds for $n = (k + 1).$

Once these steps are completed, the mathematical induction principle guarantees the formula for all $n \geq n_1$.

EXAMPLE 3 Show that $n! > 3^n$ if *n* is large enough.

Solution How large is large enough? We experiment:

It looks as if $n! > 3^n$ for $n \ge 7$. To be sure, we apply mathematical induction. We take $n_1 = 7$ in Step 1 and complete Step 2.

Suppose $k! > 3^k$ for some $k \ge 7$. Then

$$
(k + 1)! = (k + 1)(k!) > (k + 1)3^{k} > 7 \cdot 3^{k} > 3^{k+1}.
$$

Thus, for $k \geq 7$,

 $k! > 3^k$ implies $(k + 1)! > 3^{k+1}$

The mathematical induction principle now guarantees $n! \geq 3^n$ for all $n \geq 7$.

EXERCISES A.1

1. Assuming that the triangle inequality $|a + b| \le |a| + |b|$ holds for any two numbers a and b , show that

$$
|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|
$$

for any n numbers.

2. Show that if $r \neq 1$, then

$$
1 + r + r2 + \dots + rn = \frac{1 - r^{n+1}}{1 - r}
$$

for every positive integer n .

- 3. Use the Product Rule, $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$, and the fact that $\frac{d}{dx}(x) = 1$ to show that $\frac{d}{dx}(x^n) = nx^{n-1}$ for every positive integer n .
- 4. Suppose that a function $f(x)$ has the property that $f(x_1x_2) =$ $f(x_1) + f(x_2)$ for any two positive numbers x_1 and x_2 . Show that

$$
f(x_1x_2\cdots x_n) = f(x_1) + f(x_2) + \cdots + f(x_n)
$$

for the product of any *n* positive numbers x_1, x_2, \ldots, x_n .

5. Show that

$$
\frac{2}{3^1} + \frac{2}{3^2} + \cdots + \frac{2}{3^n} = 1 - \frac{1}{3^n}
$$

for all positive integers n .

- 6. Show that $n! > n^3$ if *n* is large enough.
- 7. Show that $2^n > n^2$ if *n* is large enough.
- 8. Show that $2^n \geq 1/8$ for $n \geq -3$.
- 9. Sums of squares Show that the sum of the squares of the first n positive integers is

$$
\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}.
$$

- 10. Sums of cubes Show that the sum of the cubes of the first n positive integers is $(n(n + 1)/2)^2$.
- 11. Rules for finite sums Show that the following finite sum rules hold for every positive integer n .

a.
$$
\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k
$$

b.
$$
\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k
$$

c.
$$
\sum_{k=1}^{n} ca_k = c \cdot \sum_{k=1}^{n} a_k
$$
 (Any number *c*)

$$
b_k \qquad \qquad \mathbf{d.} \quad \sum_{k=1}^n a_k = n \cdot c \qquad \text{(if } a_k \text{ has the constant value } c\text{)}
$$

12. Show that $|x^n| = |x|^n$ for every positive integer *n* and every real number *x*.