A.2

Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2–5, and Theorem 4 from Section 2.2.

THEOREM 1 Limit Laws

If *L*, *M*, *c*, and *k* are real numbers and

We proved the Sum Rule in Section 2.3 and the Power Rule is proved in more advanced texts. We obtain the Difference Rule by replacing $g(x)$ by $-g(x)$ and M by $-M$ in the Sum Rule. The Constant Multiple Rule is the special case $g(x) = k$ of the Product Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule We show that for any $\epsilon > 0$ there exists a $\delta > 0$ such that for all x in the intersection D of the domains of f and g ,

$$
0 < |x - c| < \delta \quad \Rightarrow \quad |f(x)g(x) - LM| < \epsilon.
$$

Suppose then that ϵ is a positive number, and write $f(x)$ and $g(x)$ as

$$
f(x) = L + (f(x) - L), \qquad g(x) = M + (g(x) - M).
$$

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

п

Multiply these expressions together and subtract *LM*:

$$
f(x) \cdot g(x) - LM = (L + (f(x) - L))(M + (g(x) - M)) - LM
$$

= LM + L(g(x) - M) + M(f(x) - L)
+ (f(x) - L)(g(x) - M) - LM
= L(g(x) - M) + M(f(x) - L) + (f(x) - L)(g(x) - M). (1)

Since *f* and *g* have limits *L* and *M* as $x \rightarrow c$, there exist positive numbers δ_1 , δ_2 , δ_3 , and δ_4 such that for all *x* in *D*

$$
0 < |x - c| < \delta_1 \implies |f(x) - L| < \sqrt{\epsilon/3}
$$
\n
$$
0 < |x - c| < \delta_2 \implies |g(x) - M| < \sqrt{\epsilon/3}
$$
\n
$$
0 < |x - c| < \delta_3 \implies |f(x) - L| < \epsilon/(3(1 + |M|))
$$
\n
$$
0 < |x - c| < \delta_4 \implies |g(x) - M| < \epsilon/(3(1 + |L|))
$$
\n
$$
(2)
$$

If we take δ to be the smallest numbers δ_1 through δ_4 , the inequalities on the right-hand side of the Implications (2) will hold simultaneously for $0 < |x - c| < \delta$. Therefore, for all *x* in *D*, $0 < |x - c| < \delta$ implies

$$
|f(x) \cdot g(x) - LM|
$$

\n
$$
\leq |L||g(x) - M| + |M||f(x) - L| + |f(x) - L||g(x) - M|
$$

\n
$$
\leq (1 + |L|) |g(x) - M| + (1 + |M|) |f(x) - L| + |f(x) - L||g(x) - M|
$$

\n
$$
< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \sqrt{\frac{\epsilon}{3}} \sqrt{\frac{\epsilon}{3}} = \epsilon.
$$

\n
$$
\text{Values from (2)}
$$

This completes the proof of the Limit Product Rule.

Proof of the Limit Quotient Rule We show that $\lim_{x\to c} (1/g(x)) = 1/M$. We can then conclude that

$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \left(f(x) \cdot \frac{1}{g(x)} \right) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{1}{g(x)} = L \cdot \frac{1}{M} = \frac{L}{M}
$$

by the Limit Product Rule.

Let $\epsilon > 0$ be given. To show that $\lim_{x \to c} (1/g(x)) = 1/M$, we need to show that there exists a $\delta > 0$ such that for all *x*.

$$
0 < |x - c| < \delta \quad \Rightarrow \quad \left| \frac{1}{g(x)} - \frac{1}{M} \right| < \epsilon.
$$

Since $|M| > 0$, there exists a positive number δ_1 such that for all *x*

$$
0<|x-c|<\delta_1\quad\Rightarrow\quad |g(x)-M|<\frac{M}{2}.\tag{3}
$$

For any numbers *A* and *B* it can be shown that $|A| - |B| \le |A - B|$ and $|B| - |A| \le$ $|A - B|$, from which it follows that $|A| - |B|$ $|A - B|$. With $A = g(x)$ and $B = M$, this becomes

$$
| |g(x)| - |M| | \le |g(x) - M|,
$$

which can be combined with the inequality on the right in Implication (3) to get, in turn,

$$
||g(x)| - |M|| < \frac{|M|}{2}
$$

\n
$$
-\frac{|M|}{2} < |g(x)| - |M| < \frac{|M|}{2}
$$

\n
$$
\frac{|M|}{2} < |g(x)| < \frac{3|M|}{2}
$$

\n
$$
|M| < 2|g(x)| < 3|M|
$$

\n
$$
\frac{1}{|g(x)|} < \frac{2}{|M|} < \frac{3}{|g(x)|}
$$
\n(4)

Therefore, $0 < |x - c| < \delta_1$ implies that

$$
\left|\frac{1}{g(x)} - \frac{1}{M}\right| = \left|\frac{M - g(x)}{Mg(x)}\right| \le \frac{1}{|M|} \cdot \frac{1}{|g(x)|} \cdot |M - g(x)|
$$

$$
< \frac{1}{|M|} \cdot \frac{2}{|M|} \cdot |M - g(x)|. \text{ Inequality (4)}
$$
(5)

Since $(1/2)|M|^2 \epsilon > 0$, there exists a number $\delta_2 > 0$ such that for all *x*

$$
0<|x-c|<\delta_2\quad\Rightarrow\quad |M-g(x)|<\frac{\epsilon}{2}|M|^2.\tag{6}
$$

If we take δ to be the smaller of δ_1 and δ_2 , the conclusions in (5) and (6) both hold for all *x* such that $0 < |x - c| < \delta$. Combining these conclusions gives

$$
0 < |x - c| < \delta \quad \Rightarrow \quad \left| \frac{1}{g(x)} - \frac{1}{M} \right| < \epsilon.
$$

This concludes the proof of the Limit Quotient Rule.

 \Box

п

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval *I* containing *c*, except possibly at $x = c$ itself. Suppose also that $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) =$ *L*. Then $\lim_{x\to c} f(x) = L$.

Proof for Right-Hand Limits Suppose $\lim_{x\to c^+} g(x) = \lim_{x\to c^+} h(x) = L$. Then for any $\epsilon > 0$ there exists a $\delta > 0$ such that for all *x* the interval $c < x < c + \delta$ is contained in *I* and the inequality implies

$$
L - \epsilon < g(x) < L + \epsilon \qquad \text{and} \qquad L - \epsilon < h(x) < L + \epsilon.
$$

These inequalities combine with the inequality $g(x) \leq f(x) \leq h(x)$ to give

$$
L - \epsilon < g(x) \le f(x) \le h(x) < L + \epsilon,
$$
\n
$$
L - \epsilon < f(x) < L + \epsilon,
$$
\n
$$
- \epsilon < f(x) - L < \epsilon.
$$

Therefore, for all *x*, the inequality $c < x < c + \delta$ implies $|f(x) - L| < \epsilon$.

Proof for Left-Hand Limits Suppose $\lim_{x\to c^-} g(x) = \lim_{x\to c^-} h(x) = L$. Then for any $\epsilon > 0$ there exists a $\delta > 0$ such that for all *x* the interval $c - \delta < x < c$ is contained in *I* and the inequality implies

$$
L - \epsilon < g(x) < L + \epsilon \qquad \text{and} \qquad L - \epsilon < h(x) < L + \epsilon.
$$

We conclude as before that for all $x, c - \delta < x < c$ implies $|f(x) - L| < \epsilon$.

Proof for Two-Sided Limits If $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$, then $g(x)$ and $h(x)$ both approach *L* as $x \rightarrow c^+$ and as $x \rightarrow c^-$; so $\lim_{x \rightarrow c^+} f(x) = L$ and $\lim_{x \rightarrow c^-} f(x) = L$. Hence $\lim_{x\to c} f(x)$ exists and equals *L*.

EXERCISES A.2

- **1.** Suppose that functions $f_1(x)$, $f_2(x)$, and $f_3(x)$ have limits L_1, L_2 , and L_3 , respectively, as $x \rightarrow c$. Show that their sum has limit $L_1 + L_2 + L_3$. Use mathematical induction (Appendix 1) to generalize this result to the sum of any finite number of functions.
- **2.** Use mathematical induction and the Limit Product Rule in Theorem 1 to show that if functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ have limits L_1, L_2, \ldots, L_n as $x \rightarrow c$, then

$$
\lim_{x\to c} f_1(x)f_2(x)\cdot\cdots\cdot f_n(x)=L_1\cdot L_2\cdot\cdots\cdot L_n.
$$

- **3.** Use the fact that $\lim_{x\to c} x = c$ and the result of Exercise 2 to show that $\lim_{x\to c} x^n = c^n$ for any integer $n > 1$.
- **4. Limits of polynomials** Use the fact that $\lim_{x \to c} (k) = k$ for any number *k* together with the results of Exercises 1 and 3 to show that $\lim_{x\to c} f(x) = f(c)$ for any polynomial function

$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.
$$

5. Limits of rational functions Use Theorem 1 and the result of Exercise 4 to show that if $f(x)$ and $g(x)$ are polynomial functions and $g(c) \neq 0$, then

$$
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)}.
$$

6. Composites of continuous functions Figure A.1 gives the diagram for a proof that the composite of two continuous functions is continuous. Reconstruct the proof from the diagram. The statement to be proved is this: If *f* is continuous at $x = c$ and *g* is continuous at $f(c)$, then $g \circ f$ is continuous at *c*.

Assume that *c* is an interior point of the domain of *ƒ* and that $f(c)$ is an interior point of the domain of *g*. This will make the limits involved two-sided. (The arguments for the cases that involve one-sided limits are similar.)

FIGURE A.1 The diagram for a proof that the composite of two continuous functions is continuous.