AP-4  Appendices

Proofs of Limit Theorems

This appendix proves Theorem 1, Parts 2—5, and Theorem 4 from Section 2.2.

THEOREM 1
If L, M, ¢, and k are real numbers and

lim f(x) = L

1.

Limit Laws

Sum Rule:
Difference Rule:
Product Rule:

Constant Multiple Rule:

Quotient Rule:

Power Rule:

and lim g(x) = M, then
xX—c

lim (f(x) + g(0) =L + M
lim (f(x) — gx)) = L = M
lim (f(x)gx)) = L+M

lim (kf(x)) = kL

G A
e glx) M

If » and s are integers with no common factor
and s # 0, then

lin(f(x)>r/s — Lr/s

provided that L is a real number. (If s is even,
we assume that L > 0.)

(any number k)

ifM#0

We proved the Sum Rule in Section 2.3 and the Power Rule is proved in more ad-
vanced texts. We obtain the Difference Rule by replacing g(x) by —g(x) and M by —M in
the Sum Rule. The Constant Multiple Rule is the special case g(x) = k of the Product

Rule. This leaves only the Product and Quotient Rules.

Proof of the Limit Product Rule We show that for any € > 0 there exists a 6 > 0 such

that for all x in the intersection D of the domains of f and g,

0<|x—¢c|<é =

| f(x)g(x) — LM| < €.

Suppose then that € is a positive number, and write f(x) and g(x) as

f&x) =L+ (f(x) = L),

glx) = M + (g(x) — M).
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Multiply these expressions together and subtract LM:
f(x)-glx) = LM = (L + (f(x) = L))(M + (g(x) = M)) — LM
= LM + L(g(x) — M) + M(f(x) — L)
+ (f(x) = L)(g(x) — M) — LM
= L(g(x) = M) + M(f(x) = L) + (f(x) — L)(g(x) — M). (1)

Since f and g have limits L and M as x — c, there exist positive numbers 61, 05, 63, and &4
such that for all x in D

= |f) - L] < Ve/3
0<|x—c|<8 = |g(x)—M|<\/e/73

= |f(x) — L| < €/(3(1 + |M]))
0<|x—c|<bés = |glx)— M <e/(3(1+]|L|))

0<|x—rc|<$é
0<|x—c|<é;

If we take 0 to be the smallest numbers §; through &4, the inequalities on the right-hand
side of the Implications (2) will hold simultaneously for 0 < |x — ¢| < 8. Therefore, for
allxin D, 0 < |x — ¢| < & implies
Triangle inequality
|f(x) : g(x) - LMl applied to Equation (1)
=|L|lgkx) = M|+ M| f(x) = L| + | f(x) — L||g(x) — M]|

= (1 +[L])[glx) = M|+ (1 + [M[)|f(x) = L[+ |f(x) — L]|g(x) — M|

€ € € €
< 3 + 3 + 3\ 3 = €. Values from (2)
This completes the proof of the Limit Product Rule. [

Proof of the Limit Quotient Rule We show that lim,—.(1/g(x)) = 1/M. We can then
conclude that

L

S

tim 2% = fim (f(x) -1> = lim f(x)- lim -

b
x—c g(x) x—c g(x) x—>c g(x)

by the Limit Product Rule.
Let € > 0 be given. To show that lim,—.. (1/g(x)) = 1/M, we need to show that there
exists a & > 0 such that for all x.

1 1
0<|x—cl<éd = ‘—<£.
| | glx) M

Since |[M| > 0, there exists a positive number §; such that for all x

0<lx—cl<d = |gb)—M|<%. 3)

For any numbers 4 and B it can be shown that |4| — |B| =|4 — Bland|B| — |4| =

|4 — B|, from which it follows that| |4| — |B|| = |4 — B|. With 4 = g(x) and B = M,
this becomes

|g(x)| = [M]] = |g(x) — M|,
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which can be combined with the inequality on the right in Implication (3) to get, in turn,

| M|
[l — M| <=~

—%< lg(x)| — |M|<M
2 2

2 T8 2

|M| < 2]g(x)| < 3|M]|
1 _ 2 _ 3

g M| T g0 (4)
Therefore, 0 < |x — ¢| < &, implies that
1 1 M — g(x) 11
. S = = 2. M — ox
o] = | = iy~ 5
1 2
e |M — (x) . Inequality (4) (5)
o] " a8

Since (1/2)|M|*e > 0, there exists a number 8, > 0 such that for all x
0<|x—c|<8 = |M—g(x)|<§|M|2. (6)

If we take 6 to be the smaller of §; and 6,, the conclusions in (5) and (6) both hold for all x

such that 0 < |x — ¢| < 8. Combining these conclusions gives

‘ 1

g(x)

0<|x—c|<$ —Al/[‘<e.

This concludes the proof of the Limit Quotient Rule. ]

THEOREM 4  The Sandwich Theorem

Suppose that g(x) = f(x) = h(x) for all x in some open interval / containing c,
except possibly at x = c itself. Suppose also that lim,—. g(x) = lim,—. A(x) =
L. Then lim,—. f(x) = L.

Proof for Right-Hand Limits Suppose lim,—.+ g(x) = lim,—.+ A(x) = L. Then for any
€ > 0 there exists a & > 0 such that for all x the interval ¢ < x < ¢ + & is contained in /
and the inequality implies

L—e<glx)<L+e and L—€<hx)<L+e
These inequalities combine with the inequality g(x) = f(x) = &(x) to give
L—e<gx)=fx) =hkx) <L +e,
L—e<flx)<L+e,
—e< fx) - L<e.

Therefore, for all x, the inequality ¢ < x < ¢ + & implies|f(x) — L| < e. ]
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Proof for Left-Hand Limits Suppose lim,—. g(x) = lim,—. A(x) = L. Then for any
€ > 0 there exists a & > 0 such that for all x the interval ¢ — 6 < x < ¢ is contained in /
and the inequality implies

L—e<glx)<L+e and L—e<hkx) <L+ e
We conclude as before that for all x, ¢ — 8 < x < ¢ implies|f(x) — L| < e. [

Proof for Two-Sided Limits If lim,—.g(x) = lim,—./(x) = L, then g(x) and %(x) both
approach L as x — ¢* and as x — ¢~ ; so lim,—.+ f(x) = L and lim,,.- f(x) = L. Hence

lim,—.. f(x) exists and equals L. ]

EXERCISES A.2

. Suppose that functions f(x), f2(x), and f3(x) have limits L, L,,
and L3, respectively, as x — ¢. Show that their sum has limit
Ly + L, + L;. Use mathematical induction (Appendix 1) to
generalize this result to the sum of any finite number of functions.

. Use mathematical induction and the Limit Product Rule in

Theorem 1 to show that if functions fy(x), f2(x), ..., fu(x) have
limits Ly, Ly, ..., L, as x — ¢, then

)}i_fflcfl(x)fz(x)' coefulx) =Lyt Lye oo Ly,
. Use the fact that lim,—.x = ¢ and the result of Exercise 2 to
show that lim, .. x" = ¢" for any integer n > 1.

. Limits of polynomials Use the fact that lim,—..(k) = k for any
number £ together with the results of Exercises 1 and 3 to show
that lim,—. f(x) = f(c) for any polynomial function

f(x) = anxn + an—lxn71 + -+ ax + a.

. Limits of rational functions Use Theorem 1 and the result of

Exercise 4 to show that if f(x) and g(x) are polynomial functions
and g(c) # 0, then
f6) - f(e)

oo glx)  gle)

. Composites of continuous functions Figure A.1 gives the

diagram for a proof that the composite of two continuous func-
tions is continuous. Reconstruct the proof from the diagram. The
statement to be proved is this: If f is continuous at x = ¢ and g is
continuous at f(c), then g o f is continuous at c.

Assume that ¢ is an interior point of the domain of f and that
f(c) is an interior point of the domain of g. This will make the
limits involved two-sided. (The arguments for the cases that in-
volve one-sided limits are similar.)

f g
'Sf af /\ ) 5g /\ € €
— ¢ ) =
c g(f(e)

FIGURE A.1  The diagram for a proof that the composite of two continuous functions

is continuous.
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