A.3 Commonly Occurring Limits **AP-7**

This appendix verifies limits (4)–(6) in Theorem 5 of Section 11.1.

Limit 4: If $|\mathbf{x}| < 1$, $\lim_{n \to \infty} \mathbf{x}^n = \mathbf{0}$ We need to show that to each $\epsilon > 0$ there corresponds an integer N so large that $|\mathbf{x}^n| < \epsilon$ for all n greater than N. Since $\epsilon^{1/n} \to 1$, while

|x| < 1, there exists an integer N for which $\epsilon^{1/N} > |x|$. In other words,

$$x^{N}| = |x|^{N} < \epsilon.$$
⁽¹⁾

This is the integer we seek because, if |x| < 1, then

$$|x^n| < |x^N| \quad \text{for all } n > N. \tag{2}$$

Combining (1) and (2) produces $|x^n| < \epsilon$ for all n > N, concluding the proof.

Limit 5: For any number $x, \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ Let

 $a_n = \left(1 + \frac{x}{n}\right)^n.$

$$\ln a_n = \ln \left(1 + \frac{x}{n} \right)^n = n \ln \left(1 + \frac{x}{n} \right) \rightarrow x,$$

as we can see by the following application of l'Hôpital's Rule, in which we differentiate with respect to *n*:

$$\lim_{n \to \infty} n \ln\left(1 + \frac{x}{n}\right) = \lim_{n \to \infty} \frac{\ln(1 + x/n)}{1/n}$$
$$= \lim_{n \to \infty} \frac{\left(\frac{1}{1 + x/n}\right) \cdot \left(-\frac{x}{n^2}\right)}{-1/n^2} = \lim_{n \to \infty} \frac{x}{1 + x/n} = x.$$

Apply Theorem 4, Section 11.1, with $f(x) = e^x$ to conclude that

$$\left(1+\frac{x}{n}\right)^n = a_n = e^{\ln a_n} \to e^x.$$

Limit 6: For any number x, $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ Since

$$-\frac{|x|^n}{n!} \le \frac{x^n}{n!} \le \frac{|x|^n}{n!},$$

all we need to show is that $|x|^n/n! \rightarrow 0$. We can then apply the Sandwich Theorem for Sequences (Section 11.1, Theorem 2) to conclude that $x^n/n! \rightarrow 0$.

The first step in showing that $|x|^n/n! \rightarrow 0$ is to choose an integer M > |x|, so that (|x|/M) < 1. By Limit 4, just proved, we then have $(|x|/M)^n \rightarrow 0$. We then restrict our attention to values of n > M. For these values of n, we can write

$$\frac{|x|^n}{n!} = \frac{|x|^n}{1 \cdot 2 \cdot \dots \cdot M \cdot (M+1)(M+2) \cdot \dots \cdot n}$$
$$(n-M) \text{ factors}$$
$$\leq \frac{|x|^n}{M!M^{n-M}} = \frac{|x|^n M^M}{M!M^n} = \frac{M^M}{M!} \left(\frac{|x|}{M}\right)^n.$$

Thus,

$$0 \leq \frac{|x|^n}{n!} \leq \frac{M^M}{M!} \left(\frac{|x|}{M}\right)^n.$$

Now, the constant $M^M/M!$ does not change as *n* increases. Thus the Sandwich Theorem tells us that $|x|^n/n! \rightarrow 0$ because $(|x|/M)^n \rightarrow 0$.