
A.4 Theory of the Real Numbers AP-9

Theory of the Real Numbers

A rigorous development of calculus is based on properties of the real numbers. Many
results about functions, derivatives, and integrals would be false if stated for functions
defined only on the rational numbers. In this appendix we briefly examine some basic con-
cepts of the theory of the reals that hint at what might be learned in a deeper, more theoret-
ical study of calculus.

Three types of properties make the real numbers what they are. These are the
algebraic, order, and completeness properties. The algebraic properties involve addition
and multiplication, subtraction and division. They apply to rational or complex numbers as
well as to the reals.

The structure of numbers is built around a set with addition and multiplication opera-
tions. The following properties are required of addition and multiplication.

A1 for all a, b, c.

A2 for all a, b, c.

A3 There is a number called “0” such that for all a.

A4 For each number a, there is a b such that 

M1 for all a, b, c.

M2 for all a, b.

M3 There is a number called “1” such that for all a.

M4 For each nonzero a, there is a b such that 

D for all a, b, c.

A1 and M1 are associative laws, A2 and M2 are commutativity laws, A3 and M3 are
identity laws, and D is the distributive law. Sets that have these algebraic properties are
examples of fields, and are studied in depth in the area of theoretical mathematics called
abstract algebra.

The order properties allow us to compare the size of any two numbers. The order
properties are

O1 For any a and b, either or or both.

O2 If and then 

O3 If and then 

O4 If then 

O5 If and then 

O3 is the transitivity law, and O4 and O5 relate ordering to addition and multiplication.

ac … bc .0 … ca … b

a + c … b + c .a … b

a … c .b … ca … b

a = b .b … aa … b

b … aa … b

asb + cd = ab + bc

ab = 1.

a # 1 = a

ab = ba

a(bc) = (ab)c

a + b = 0.

a + 0 = a

a + b = b + a

a + sb + cd = sa + bd + c
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We can order the reals, the integers, and the rational numbers, but we cannot order the
complex numbers (see Appendix A.5). There is no reasonable way to decide whether a
number like is bigger or smaller than zero. A field in which the size of any two
elements can be compared as above is called an ordered field. Both the rational numbers
and the real numbers are ordered fields, and there are many others.

We can think of real numbers geometrically, lining them up as points on a line. The
completeness property says that the real numbers correspond to all points on the line,
with no “holes” or “gaps.” The rationals, in contrast, omit points such as and and
the integers even leave out fractions like 1 2. The reals, having the completeness property,
omit no points.

What exactly do we mean by this vague idea of missing holes? To answer this we must
give a more precise description of completeness. A number M is an upper bound for a set
of numbers if all numbers in the set are smaller than or equal to M. M is a least upper
bound if it is the smallest upper bound. For example, is an upper bound for the
negative numbers. So is showing that 2 is not a least upper bound. The least upper
bound for the set of negative numbers is We define a complete ordered field to be
one in which every nonempty set bounded above has a least upper bound.

If we work with just the rational numbers, the set of numbers less than is
bounded, but it does not have a rational least upper bound, since any rational upper bound
M can be replaced by a slightly smaller rational number that is still larger than So the
rationals are not complete. In the real numbers, a set that is bounded above always has a
least upper bound. The reals are a complete ordered field.

The completeness property is at the heart of many results in calculus. One example
occurs when searching for a maximum value for a function on a closed interval [a, b], as in
Section 4.1. The function has a maximum value on [0, 1] at the point x satis-
fying or If we limited our consideration to functions defined
only on rational numbers, we would have to conclude that the function has no maximum,
since is irrational (Figure A.2). The Extreme Value Theorem (Section 4.1), which
implies that continuous functions on closed intervals [a, b] have a maximum value, is not
true for functions defined only on the rationals.

The Intermediate Value Theorem implies that a continuous function ƒ on an interval
[a, b] with and must be zero somewhere in [a, b]. The function values
cannot jump from negative to positive without there being some point x in [a, b] where

The Intermediate Value Theorem also relies on the completeness of the real
numbers and is false for continuous functions defined only on the rationals. The function

has and but if we consider ƒ only on the rational
numbers, it never equals zero. The only value of x for which is an
irrational number.

We have captured the desired properties of the reals by saying that the real numbers are
a complete ordered field. But we’re not quite finished. Greek mathematicians in the school
of Pythagoras tried to impose another property on the numbers of the real line, the condi-
tion that all numbers are ratios of integers. They learned that their effort was doomed when
they discovered irrational numbers such as How do we know that our efforts to specify
the real numbers are not also flawed, for some unseen reason? The artist Escher drew opti-
cal illusions of spiral staircases that went up and up until they rejoined themselves at the
bottom. An engineer trying to build such a staircase would find that no structure realized
the plans the architect had drawn. Could it be that our design for the reals contains some
subtle contradiction, and that no construction of such a number system can be made?

We resolve this issue by giving a specific description of the real numbers and verify-
ing that the algebraic, order, and completeness properties are satisfied in this model. This
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is called a construction of the reals, and just as stairs can be built with wood, stone, or
steel, there are several approaches to constructing the reals. One construction treats the
reals as all the infinite decimals,

In this approach a real number is an integer a followed by a sequence of decimal digits
each between 0 and 9. This sequence may stop, or repeat in a periodic

pattern, or keep going forever with no pattern. In this form, and
represent three familiar real numbers. The real meaning of the dots

following these digits requires development of the theory of sequences and series,
as in Chapter 11. Each real number is constructed as the limit of a sequence of rational
numbers given by its finite decimal approximations. An infinite decimal is then the same
as a series

This decimal construction of the real numbers is not entirely straightforward. It’s
easy enough to check that it gives numbers that satisfy the completeness and order prop-
erties, but verifying the algebraic properties is rather involved. Even adding or multiply-
ing two numbers requires an infinite number of operations. Making sense of division
requires a careful argument involving limits of rational approximations to infinite
decimals.

A different approach was taken by Richard Dedekind (1831–1916), a German mathe-
matician, who gave the first rigorous construction of the real numbers in 1872. Given any
real number x, we can divide the rational numbers into two sets: those less than or equal to
x and those greater. Dedekind cleverly reversed this reasoning and defined a real number
to be a division of the rational numbers into two such sets. This seems like a strange
approach, but such indirect methods of constructing new structures from old are common
in theoretical mathematics.

These and other approaches (see Appendix A.5) can be used to construct a system of
numbers having the desired algebraic, order, and completeness properties. A final issue that
arises is whether all the constructions give the same thing. Is it possible that different con-
structions result in different number systems satisfying all the required properties? If yes,
which of these is the real numbers? Fortunately, the answer turns out to be no. The reals are
the only number system satisfying the algebraic, order, and completeness properties.

Confusion about the nature of real numbers and about limits caused considerable con-
troversy in the early development of calculus. Calculus pioneers such as Newton, Leibniz,
and their successors, when looking at what happens to the difference quotient

as each of and approach zero, talked about the resulting derivative being a quotient
of two infinitely small quantities. These “infinitesimals,” written dx and dy, were thought
to be some new kind of number, smaller than any fixed number but not zero. Similarly, a
definite integral was thought of as a sum of an infinite number of infinitesimals

as x varied over a closed interval. While the approximating difference quotients 
were understood much as today, it was the quotient of infinitesimal quantities, rather than
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a limit, that was thought to encapsulate the meaning of the derivative. This way of thinking
led to logical difficulties, as attempted definitions and manipulations of infinitesimals ran
into contradictions and inconsistencies. The more concrete and computable difference
quotients did not cause such trouble, but they were thought of merely as useful calculation
tools. Difference quotients were used to work out the numerical value of the derivative and
to derive general formulas for calculation, but were not considered to be at the heart of the
question of what the derivative actually was. Today we realize that the logical problems as-
sociated with infinitesimals can be avoided by defining the derivative to be the limit of its
approximating difference quotients. The ambiguities of the old approach are no longer
present, and in the standard theory of calculus, infinitesimals are neither needed nor used.
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