
AP-12 Appendices

Complex Numbers

Complex numbers are expressions of the form where a and b are real numbers and
i is a symbol for Unfortunately, the words “real” and “imaginary” have connotations
that somehow place in a less favorable position in our minds than As a matter of
fact, a good deal of imagination, in the sense of inventiveness, has been required to con-
struct the real number system, which forms the basis of the calculus (see Appendix A.4). In
this appendix we review the various stages of this invention. The further invention of a
complex number system is then presented.

The Development of the Real Numbers

The earliest stage of number development was the recognition of the counting numbers
which we now call the natural numbers or the positive integers. Certain

simple arithmetical operations can be performed with these numbers without getting out-
side the system. That is, the system of positive integers is closed under the operations of
addition and multiplication. By this we mean that if m and n are any positive integers,
then

(1)

are also positive integers. Given the two positive integers on the left side of either equation
in (1), we can find the corresponding positive integer on the right side. More than this, we
can sometimes specify the positive integers m and p and find a positive integer n such that

For instance, can be solved when the only numbers we know are
the positive integers. But the equation cannot be solved unless the number
system is enlarged.

The number zero and the negative integers were invented to solve equations like
In a civilization that recognizes all the integers

(2)

an educated person can always find the missing integer that solves the equation
when given the other two integers in the equation.

Suppose our educated people also know how to multiply any two of the integers in
the list (2). If, in Equations (1), they are given m and q, they discover that sometimes
they can find n and sometimes they cannot. Using their imagination, they may be

m + n = p

Á , -3, -2, -1, 0, 1, 2, 3, Á ,

7 + n = 3.

7 + n = 3
3 + n = 7m + n = p .

m + n = p and mn = q

1, 2, 3, Á ,

12.1-1
1-1.

a + ib ,

A.5
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inspired to invent still more numbers and introduce fractions, which are just ordered
pairs m n of integers m and n. The number zero has special properties that may bother
them for a while, but they ultimately discover that it is handy to have all ratios of inte-
gers m n, excluding only those having zero in the denominator. This system, called the
set of rational numbers, is now rich enough for them to perform the rational opera-
tions of arithmetic:

1. (a) addition 2. (a) multiplication
(b) subtraction (b) division

on any two numbers in the system, except that they cannot divide by zero because it is
meaningless.

The geometry of the unit square (Figure A.3) and the Pythagorean theorem showed
that they could construct a geometric line segment that, in terms of some basic unit of
length, has length equal to Thus they could solve the equation

by a geometric construction. But then they discovered that the line segment representing
is an incommensurable quantity. This means that cannot be expressed as the ratio

of two integer multiples of some unit of length. That is, our educated people could not find
a rational number solution of the equation 

There is no rational number whose square is 2. To see why, suppose that there were
such a rational number. Then we could find integers p and q with no common factor other
than 1, and such that

(3)

Since p and q are integers, p must be even; otherwise its product with itself would be odd.
In symbols, where is an integer. This leads to which says q must be
even, say where is an integer. This makes 2 a factor of both p and q, contrary
to our choice of p and q as integers with no common factor other than 1. Hence there is no
rational number whose square is 2.

Although our educated people could not find a rational solution of the equation
they could get a sequence of rational numbers

(4)

whose squares form a sequence

(5)

that converges to 2 as its limit. This time their imagination suggested that they needed
the concept of a limit of a sequence of rational numbers. If we accept the fact that an
increasing sequence that is bounded from above always approaches a limit (Theorem 6,
Section 11.1) and observe that the sequence in (4) has these properties, then we want it
to have a limit L. This would also mean, from (5), that and hence L is not one
of our rational numbers. If to the rational numbers we further add the limits of all
bounded increasing sequences of rational numbers, we arrive at the system of all “real”
numbers. The word real is placed in quotes because there is nothing that is either “more
real” or “less real” about this system than there is about any other mathematical
system.

L2
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x2
= 2,

q1q = 2q1 ,
2p1

2
= q2p1p = 2p1 ,

p2
= 2q2 .

x2
= 2.

2222

x2
= 2

22.

>
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FIGURE A.3 With a straightedge and
compass, it is possible to construct a
segment of irrational length.
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The Complex Numbers

Imagination was called upon at many stages during the development of the real number
system. In fact, the art of invention was needed at least three times in constructing the
systems we have discussed so far:

1. The first invented system: the set of all integers as constructed from the counting
numbers.

2. The second invented system: the set of rational numbers m n as constructed from the
integers.

3. The third invented system: the set of all real numbers x as constructed from the
rational numbers.

These invented systems form a hierarchy in which each system contains the previous
system. Each system is also richer than its predecessor in that it permits additional opera-
tions to be performed without going outside the system:

1. In the system of all integers, we can solve all equations of the form

(6)

where a can be any integer.

2. In the system of all rational numbers, we can solve all equations of the form

(7)

provided a and b are rational numbers and 

3. In the system of all real numbers, we can solve all of Equations (6) and (7) and, in ad-
dition, all quadratic equations

(8)

You are probably familiar with the formula that gives the solutions of Equation (8),
namely,

(9)

and are familiar with the further fact that when the discriminant, is negative,
the solutions in Equation (9) do not belong to any of the systems discussed above. In fact,
the very simple quadratic equation

is impossible to solve if the only number systems that can be used are the three invented
systems mentioned so far.

Thus we come to the fourth invented system, the set of all complex numbers
We could dispense entirely with the symbol i and use the ordered pair notation

(a, b). Since, under algebraic operations, the numbers a and b are treated somewhat dif-
ferently, it is essential to keep the order straight. We therefore might say that the
complex number system consists of the set of all ordered pairs of real numbers (a, b),
together with the rules by which they are to be equated, added, multiplied, and so on,
listed below. We will use both the (a, b) notation and the notation in the discus-
sion that follows. We call a the real part and b the imaginary part of the complex
number (a, b).

a + ib

a + ib .

x2
+ 1 = 0

b2
- 4ac ,

x =

-b ; 2b2
- 4ac

2a
,

ax2
+ bx + c = 0 having a Z 0 and b2

- 4ac Ú 0.

a Z 0.

ax + b = 0,

x + a = 0,

>
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We make the following definitions.

Equality
Two complex numbers (a, b)

if and only if and (c, d) are equal if and only 
and if and 

Addition
The sum of the two complex
numbers (a, b) and (c, d) is the
complex number .

Multiplication

The product of two complex
numbers (a, b) and (c, d) is the
complex number 

The product of a real number c
and the complex number (a, b) is
the complex number (ac, bc).

The set of all complex numbers (a, b) in which the second number b is zero has all the
properties of the set of real numbers a. For example, addition and multiplication of (a, 0)
and (c, 0) give

which are numbers of the same type with imaginary part equal to zero. Also, if we multi-
ply a “real number” (a, 0) and the complex number (c, d), we get

In particular, the complex number (0, 0) plays the role of zero in the complex number
system, and the complex number (1, 0) plays the role of unity or one.

The number pair (0, 1), which has real part equal to zero and imaginary part equal to
one, has the property that its square,

has real part equal to minus one and imaginary part equal to zero. Therefore, in the system
of complex numbers (a, b) there is a number whose square can be added to

to produce that is,

The equation

therefore has a solution in this new number system.
You are probably more familiar with the notation than you are with the nota-

tion (a, b). And since the laws of algebra for the ordered pairs enable us to write

while (1, 0) behaves like unity and (0, 1) behaves like a square root of minus one, we need
not hesitate to write in place of (a, b). The i associated with b is like a tracer elementa + ib

sa, bd = sa, 0d + s0, bd = as1, 0d + bs0, 1d ,

a + ib
x = s0, 1d

x2
+ 1 = 0

s0, 1d2
+ s1, 0d = s0, 0d .

zero = s0, 0d ,unity = s1, 0d
x = s0, 1d

s0, 1ds0, 1d = s -1, 0d ,

sa, 0d # sc, dd = sac, add = asc, dd .

 sa, 0d # sc, 0d = sac, 0d, 

 sa, 0d + sc, 0d = sa + c, 0d, 

csa + ibd = ac + isbcd
sac - bd, ad + bcd .

= sac - bdd + isad + bcd
sa + ibdsc + idd

sa + c, b + dd
= sa + cd + isb + dd
sa + ibd + sc + idd

b = d .a = cb = d .a = c

a + ib = c + id
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that tags the imaginary part of We can pass at will from the realm of ordered pairs
(a, b) to the realm of expressions and conversely. But there is nothing less “real”
about the symbol than there is about the symbol once we have
learned the laws of algebra in the complex number system of ordered pairs (a, b).

To reduce any rational combination of complex numbers to a single complex number,
we apply the laws of elementary algebra, replacing wherever it appears by Of
course, we cannot divide by the complex number But if 
then we may carry out a division as follows:

The result is a complex number with

and since 
The number that is used as multiplier to clear the i from the denominator is

called the complex conjugate of It is customary to use (read “z bar”) to denote
the complex conjugate of z; thus

Multiplying the numerator and denominator of the fraction by the com-
plex conjugate of the denominator will always replace the denominator by a real number.

EXAMPLE 1 Arithmetic Operations with Complex Numbers

(a)

(b)

(c)

(d)

Argand Diagrams

There are two geometric representations of the complex number 

1. as the point P(x, y) in the xy-plane

2. as the vector from the origin to P.

In each representation, the x-axis is called the real axis and the y-axis is the imaginary
axis. Both representations are Argand diagrams for (Figure A.4).

In terms of the polar coordinates of x and y, we have

x = r cos u, y = r sin u ,

x + iy

OP§

z = x + iy :

 =

6 + 22i
40

=

3
20

+
11
20

 i

 =

12 + 4i + 18i + 6i2

36 + 12i - 12i - 4i2

 
2 + 3i
6 - 2i

=

2 + 3i
6 - 2i

 
6 + 2i
6 + 2i

 = 12 - 4i + 18i - 6i 2
= 12 + 14i + 6 = 18 + 14i

 s2 + 3ids6 - 2id = s2ds6d + s2ds -2id + s3ids6d + s3ids -2id
s2 + 3id - s6 - 2id = s2 - 6d + s3 - s -2ddi = -4 + 5i

s2 + 3id + s6 - 2id = s2 + 6d + s3 - 2di = 8 + i

sc + idd>sa + ibd

z = a + ib, z = a - ib .

za + ib .
a - ib

a + ib = sa, bd Z s0, 0d .a2
+ b2

Z 0,

x =

ac + bd
a2

+ b2 , y =

ad - bc
a2

+ b2 ,

x + iy

c + id
a + ib

=

sc + iddsa - ibd
sa + ibdsa - ibd

=

sac + bdd + isad - bcd
a2

+ b2 .

a + ib Z 0,s0, 0d = 0 + i0.
-1.i2

s1, 0d = 1,s0, 1d = i
a + ib ,

a + ib .
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x

y

O

r
y

x

P(x, y)

�

FIGURE A.4 This Argand diagram
represents both as a point
P(x, y) and as a vector OP§ .

z = x + iy
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and

(10)

We define the absolute value of a complex number to be the length r of a vector
from the origin to P(x, y). We denote the absolute value by vertical bars; thus,

If we always choose the polar coordinates r and so that r is nonnegative, then

The polar angle is called the argument of z and is written Of course, any
integer multiple of may be added to to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its
conjugate and its absolute value namely,

Euler’s Formula

The identity

called Euler’s formula, enables us to rewrite Equation (10) as

This formula, in turn, leads to the following rules for calculating products, quotients, powers,
and roots of complex numbers. It also leads to Argand diagrams for Since

is what we get from Equation (10) by taking we can say that is
represented by a unit vector that makes an angle with the positive x-axis, as shown in
Figure A.5.

u

eiur = 1,cos u + i sin u

eiu .

z = reiu .

eiu
= cos u + i sin u ,

z # z = ƒ z ƒ
2 .

ƒ z ƒ ,z ,

u2p
u = arg z .u

r = ƒ x + iy ƒ .

u

ƒ x + iy ƒ = 2x2
+ y2 .

OP§
x + iy

z = x + iy = rscos u + i sin ud .

A.5 Complex Numbers AP-17

x x

y y

�� � arg z
r � 1

O O

ei� � cos � � i sin � ei� � cos � � i sin �

(cos �, sin �)

(a) (b)

FIGURE A.5 Argand diagrams for (a) as a
vector and (b) as a point.

eiu
= cos u + i sin u

Products

To multiply two complex numbers, we multiply their absolute values and add their angles. Let

(11)z1 = r1 eiu1, z2 = r2 eiu2 ,
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so that

Then

and hence

(12)

Thus, the product of two complex numbers is represented by a vector whose length is the
product of the lengths of the two factors and whose argument is the sum of their arguments
(Figure A.6). In particular, from Equation (12) a vector may be rotated counterclockwise
through an angle by multiplying it by Multiplication by i rotates 90°, by rotates
180°, by rotates 270°, and so on.

EXAMPLE 2 Finding a Product of Complex Numbers

Let We plot these complex numbers in an Argand diagram
(Figure A.7) from which we read off the polar representations

Then

The notation exp (A) stands for 

Quotients

Suppose in Equation (11). Then

Hence

That is, we divide lengths and subtract angles for the quotient of complex numbers.

EXAMPLE 3 Let and as in Example 2. Then

 L 0.183 + 0.683i .

 
1 + i23 - i

=

22eip>4
2e-ip>6 =

22
2

 e5pi>12
L 0.707 acos 

5p
12

+ i sin 
5p
12
b

z2 = 23 - i ,z1 = 1 + i

` z1
z2
` =

r1
r2

=

ƒ z1 ƒ

ƒ z2 ƒ

 and arg az1
z2
b = u1 - u2 = arg z1 - arg z2.

z1
z2

=

r1 eiu1

r2 eiu2
=

r1
r2

 eisu1 -u2d .

r2 Z 0

eA .

 = 222 acos 
p
12

+ i sin 
p
12
b L 2.73 + 0.73i .

 z1 z2 = 222 exp aip
4

-

ip
6
b = 222 exp aip

12
b

z1 = 22e ip>4, z2 = 2e-ip>6 .

z1 = 1 + i, z2 = 23 - i .

- i
-1eiu .u

arg sz1 z2d = u1 + u2 = arg z1 + arg z2 .

ƒ z1 z2 ƒ = r1 r2 = ƒ z1 ƒ
#
ƒ z2 ƒ

z1 z2 = r1 eiu1 # r2 eiu2
= r1 r2 eisu1 +u2d

ƒ z1 ƒ = r1, arg z1 = u1; ƒ z2 ƒ = r2, arg z2 = u2 .
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x

y

O

�1

�2

�1

z1z2

r1r2

r2 r1

z1

z2

FIGURE A.6 When and are
multiplied, and
arg sz1 z2d = u1 + u2 .

ƒ z1 z2 ƒ = r1
# r2

z2z1

0

1

–1

x

y

�2

�3 � 1

1 � �3  

2�2

2
1

z1z2

z1 � 1 � i

z2 � �3 � i

�
4 �

12
�
6

–

FIGURE A.7 To multiply two complex
numbers, multiply their absolute values
and add their arguments.
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Powers

If n is a positive integer, we may apply the product formulas in Equation (12) to find

With we obtain

(13)

The length is raised to the nth power and the angle is multiplied by n.
If we take in Equation (13), we obtain De Moivre’s Theorem.r = 1

u = arg zr = ƒ z ƒ

 = rneinu .

 zn
= sreiudn

= rneisu+u+
Á

+ud

z = reiu ,

zn
= z # z # Á # z .

A.5 Complex Numbers AP-19

n factors

n summands

De Moivre’s Theorem

(14)scos u + i sin udn
= cos nu + i sin nu .

If we expand the left side of De Moivre’s equation above by the Binomial Theorem
and reduce it to the form we obtain formulas for and as polynomials
of degree n in and 

EXAMPLE 4 If in Equation (14), we have

The left side of this equation expands to

The real part of this must equal and the imaginary part must equal Therefore,

Roots

If is a complex number different from zero and n is a positive integer, then there
are precisely n different complex numbers that are nth roots of z. To see
why, let be an nth root of so that

or

Then

is the real, positive nth root of r. For the argument, although we cannot say that and
must be equal, we can say that they may differ only by an integer multiple of That

is,

na = u + 2kp,    k = 0, ;1, ;2, Á .

2p .u

na

r = 2n r

rneina
= reiu .

wn
= z

z = reiu ,w = reia
w0, w1, Á , wn - 1 ,

z = reiu

 sin 3u = 3 cos2 u sin u - sin3 u .

 cos 3u = cos3 u - 3 cos u sin2 u, 

sin 3u .cos 3u

cos3 u + 3i cos2 u sin u - 3 cos u sin2 u - i sin3 u .

scos u + i sin ud3
= cos 3u + i sin 3u .

n = 3

sin u .cos u

sin nucos nua + ib ,
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Therefore,

Hence, all the nth roots of are given byz = reiu

a =

u
n + k 

2p
n .

AP-20 Appendices

(15)2n reiu
= 2n r exp i aun + k 

2p
n b ,    k = 0, ;1, ;2, Á .

There might appear to be infinitely many different answers corresponding to the
infinitely many possible values of k, but gives the same answer as in
Equation (15). Thus, we need only take n consecutive values for k to obtain all the
different nth roots of z. For convenience, we take

All the nth roots of lie on a circle centered at the origin and having radius equal to
the real, positive nth root of r. One of them has argument The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal
to Figure A.8 illustrates the placement of the three cube roots, of the
complex number 

EXAMPLE 5 Finding Fourth Roots

Find the four fourth roots of 

Solution As our first step, we plot the number in an Argand diagram (Figure A.9)
and determine its polar representation Here, and One of
the fourth roots of is We obtain others by successive additions of

to the argument of this first one. Hence,

and the four roots are

The Fundamental Theorem of Algebra

One might say that the invention of is all well and good and leads to a number sys-
tem that is richer than the real number system alone; but where will this process end? Are

2-1

 w3 = 2 ccos 
7p
4

+ i sin 
7p
4
d = 22s1 - id .

 w2 = 2 ccos 
5p
4

+ i sin 
5p
4
d = 22s -1 - id

 w1 = 2 ccos 
3p
4

+ i sin 
3p
4
d = 22s -1 + id

 w0 = 2 ccos 
p
4

+ i sin 
p
4
d = 22s1 + id

24 16 exp ip = 2 exp i ap
4

, 
3p
4

, 
5p
4

, 
7p
4
b ,

2p>4 = p>2 2eip>4 .16eip
u = p .z = -16, r = +16,reiu .

-16

-16.

z = reiu .
w0, w1, w2 ,2p>n .

a = u>n .
reiu

k = 0, 1, 2, Á , n - 1.

k = mk = n + m

x

y

O

r

w2

w1

w0

2�
3

2�
3

2�
3

r1/3

z � rei�

�

�
3

FIGURE A.8 The three cube roots of
z = reiu .

2

x

y

–16

w0

w3w2

w1

�
4

�
2

�
2

�
2

�
2

FIGURE A.9 The four fourth roots of
-16.
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we also going to invent still more systems so as to obtain and so on? But it
turns out this is not necessary. These numbers are already expressible in terms of the com-
plex number system In fact, the Fundamental Theorem of Algebra says that with
the introduction of the complex numbers we now have enough numbers to factor every
polynomial into a product of linear factors and so enough numbers to solve every possible
polynomial equation.

a + ib .

41-1, 61-1,

A.5 Complex Numbers AP-21

The Fundamental Theorem of Algebra
Every polynomial equation of the form

in which the coefficients are any complex numbers, whose degree n
is greater than or equal to one, and whose leading coefficient is not zero, has
exactly n roots in the complex number system, provided each multiple root of
multiplicity m is counted as m roots.

an

a0, a1, Á , an

an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0 = 0,

A proof of this theorem can be found in almost any text on the theory of functions of a
complex variable.

EXERCISES A.5

Operations with Complex Numbers
1. How computers multiply complex numbers Find 

a. b.

c.

(This is how complex numbers are multiplied by computers.)

2. Solve the following equations for the real numbers, x and y.

a.

b.

c.

Graphing and Geometry
3. How may the following complex numbers be obtained from

geometrically? Sketch.

a. b.

c. d. 1 z

4. Show that the distance between the two points and in an
Argand diagram is ƒ z1 - z2 ƒ .

z2z1

>-z

s -zdz

z = x + iy

s3 - 2idsx + iyd = 2sx - 2iyd + 2i - 1

a1 + i
1 - i

b2

+

1
x + iy

= 1 + i

s3 + 4id2
- 2sx - iyd = x + iy

s -1, -2d # s2, 1d
s2, -1d # s -2, 3ds2, 3d # s4, -2d

= sac - bd, ad + bcd .
sa, bd # sc, dd

In Exercises 5–10, graph the points that satisfy the given
conditions.

5. a. b. c.

6. 7.

8. 9.

10.

Express the complex numbers in Exercises 11–14 in the form 
with and Draw an Argand diagram for each
calculation.

11. 12.

13. 14.

Powers and Roots
Use De Moivre’s Theorem to express the trigonometric functions in
Exercises 15 and 16 in terms of and 

15. 16.

17. Find the three cube roots of 1.

sin 4ucos 4u

sin u .cos u

s2 + 3ids1 - 2id1 + i23

1 - i23

1 + i
1 - iA1 + 2-3 B2

-p 6 u … p .r Ú 0
reiu ,

ƒ z + 1 ƒ Ú ƒ z ƒ

ƒ z + i ƒ = ƒ z - 1 ƒƒ z + 1 ƒ = ƒ z - 1 ƒ

ƒ z + 1 ƒ = 1ƒ z - 1 ƒ = 2

ƒ z ƒ 7 2ƒ z ƒ 6 2ƒ z ƒ = 2

z = x + iy
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18. Find the two square roots of i.

19. Find the three cube roots of 

20. Find the six sixth roots of 64.

21. Find the four solutions of the equation 

22. Find the six solutions of the equation 

23. Find all solutions of the equation 

24. Solve the equation 

Theory and Examples
25. Complex numbers and vectors in the plane Show with an

Argand diagram that the law for adding complex numbers is the
same as the parallelogram law for adding vectors.

26. Complex arithmetic with conjugates Show that the conjugate
of the sum (product, or quotient) of two complex numbers, and

, is the same as the sum (product, or quotient) of their
conjugates.

27. Complex roots of polynomials with real coefficients come in
complex-conjugate pairs

z2

z1

x4
+ 1 = 0.

x4
+ 4x2

+ 16 = 0.

z6
+ 2z3

+ 2 = 0.

z4
- 2z2

+ 4 = 0.

-8i .
a. Extend the results of Exercise 26 to show that if

is a polynomial with real coefficients 

b. If z is a root of the equation where ƒ(z) is a
polynomial with real coefficients as in part (a), show that 
the conjugate is also a root of the equation. (Hint: Let

then both u and y are zero. Use the fact
that )

28. Absolute value of a conjugate Show that 

29. When If z and are equal, what can you say about the
location of the point z in the complex plane?

30. Real and imaginary parts Let Re(z) denote the real part of z
and Im(z) the imaginary part. Show that the following relations
hold for any complex numbers and 

a. b.

c.

d.

e. ƒ z1 + z2 ƒ … ƒ z1 ƒ + ƒ z2 ƒ

ƒ z1 + z2 ƒ
2

= ƒ z1 ƒ
2

+ ƒ z2 ƒ
2

+ 2Resz1z2d
ƒ Reszd ƒ … ƒ z ƒ

z - z = 2iImszdz + z = 2Reszd
z2 .z, z1 ,

zz = z
ƒ z ƒ = ƒ z ƒ .

ƒszd = ƒszd = u - iy .
ƒszd = u + iy = 0;

z

ƒszd = 0,

a0, Á , an .

ƒszd = an zn
+ an - 1 zn - 1

+
Á

+ a1 z + a0

ƒszd = ƒszd
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