A.6

The Distributive Law for Vector Cross Products

In this appendix, we prove the Distributive Law

$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

which is Property 2 in Section 12.4.

Proof To derive the Distributive Law, we construct $\mathbf{u} \times \mathbf{v}$ a new way. We draw \mathbf{u} and \mathbf{v} from the common point *O* and construct a plane *M* perpendicular to \mathbf{u} at *O* (Figure A.10). We then project \mathbf{v} orthogonally onto *M*, yielding a vector \mathbf{v}' with length $|\mathbf{v}| \sin \theta$. We rotate \mathbf{v}' 90° about \mathbf{u} in the positive sense to produce a vector \mathbf{v}'' . Finally, we multiply \mathbf{v}'' by the

length of **u**. The resulting vector $|\mathbf{u}|\mathbf{v}''$ is equal to $\mathbf{u} \times \mathbf{v}$ since \mathbf{v}'' has the same direction as $\mathbf{u} \times \mathbf{v}$ by its construction (Figure A.10) and

$$|\mathbf{u}||\mathbf{v}''| = |\mathbf{u}||\mathbf{v}'| = |\mathbf{u}||\mathbf{v}|\sin\theta = |\mathbf{u}\times\mathbf{v}|.$$

Now each of these three operations, namely,

- 1. projection onto M
- **2.** rotation about **u** through 90°
- 3. multiplication by the scalar $|\mathbf{u}|$

when applied to a triangle whose plane is not parallel to \mathbf{u} , will produce another triangle. If we start with the triangle whose sides are \mathbf{v} , \mathbf{w} , and $\mathbf{v} + \mathbf{w}$ (Figure A.11) and apply these three steps, we successively obtain the following:

1. A triangle whose sides are v', w', and (v + w)' satisfying the vector equation

$$\mathbf{v}' + \mathbf{w}' = (\mathbf{v} + \mathbf{w})'$$

2. A triangle whose sides are \mathbf{v}'' , \mathbf{w}'' , and $(\mathbf{v} + \mathbf{w})''$ satisfying the vector equation $\mathbf{v}'' + \mathbf{w}'' = (\mathbf{v} + \mathbf{w})''$

(the double prime on each vector has the same meaning as in Figure A.10)

FIGURE A.11 The vectors, \mathbf{v} , \mathbf{w} , $\mathbf{v} + \mathbf{w}$, and their projections onto a plane perpendicular to \mathbf{u} .

3. A triangle whose sides are $|\mathbf{u}|\mathbf{v}'', |\mathbf{u}|\mathbf{w}''$, and $|\mathbf{u}|(\mathbf{v} + \mathbf{w})''$ satisfying the vector equation

$$|\mathbf{u}|\mathbf{v}'' + |\mathbf{u}|\mathbf{w}'' = |\mathbf{u}|(\mathbf{v} + \mathbf{w})''.$$

Substituting $|\mathbf{u}|\mathbf{v}'' = \mathbf{u} \times \mathbf{v}, |\mathbf{u}|\mathbf{w}'' = \mathbf{u} \times \mathbf{w}$, and $|\mathbf{u}|(\mathbf{v} + \mathbf{w})'' = \mathbf{u} \times (\mathbf{v} + \mathbf{w})$ from our discussion above into this last equation gives

$$\mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w} = \mathbf{u} \times (\mathbf{v} + \mathbf{w}),$$

which is the law we wanted to establish.