
A.7 The Mixed Derivative Theorem and the Increment Theorem AP-23

The Mixed Derivative Theorem and the Increment Theorem

This appendix derives the Mixed Derivative Theorem (Theorem 2, Section 14.3) and the
Increment Theorem for Functions of Two Variables (Theorem 3, Section 14.3). Euler first
published the Mixed Derivative Theorem in 1734, in a series of papers he wrote on
hydrodynamics.

A.7
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AP-24 Appendices

THEOREM 2 The Mixed Derivative Theorem
If ƒ(x, y) and its partial derivatives and are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then
ƒxysa, bd = ƒyxsa, bd .

ƒyxƒx, ƒy, ƒxy ,

Proof The equality of and can be established by four applications of
the Mean Value Theorem (Theorem 4, Section 4.2). By hypothesis, the point (a, b) lies in
the interior of a rectangle R in the xy-plane on which and are all defined.
We let h and k be the numbers such that the point also lies in R, and we
consider the difference

(1)

where

(2)

We apply the Mean Value Theorem to F, which is continuous because it is differentiable.
Then Equation (1) becomes

(3)

where lies between a and From Equation (2).

so Equation (3) becomes

(4)

Now we apply the Mean Value Theorem to the function and have

or

for some between b and By substituting this into Equation (4), we get

(5)

for some point in the rectangle whose vertices are the four points (a, b),
and (See Figure A.12.)

By substituting from Equation (2) into Equation (1), we may also write

(6)
where

(7)

The Mean Value Theorem applied to Equation (6) now gives

(8)¢ = kf¿sd2d

fs yd = ƒsa + h, yd - ƒsa, yd .

 = fsb + kd - fsbd, 

 = [ƒsa + h, b + kd - ƒsa, b + kd] - [ƒsa + h, bd - ƒsa, bd]

 ¢ = ƒsa + h, b + kd - ƒsa + h, bd - ƒsa, b + kd + ƒsa, bd

sa, b + kd .sa + h, bd, sa + h, b + kd ,
R¿sc1, d1d

¢ = hkƒxysc1, d1d

b + k .d1

ƒxsc1, b + kd - ƒxsc1, bd = kƒxysc1, d1d

gsb + kd - gsbd = kg¿sd1d ,

gs yd = fxsc1, yd

¢ = h[ƒxsc1, b + kd - ƒxsc1, bd] .

F¿sxd = ƒxsx, b + kd - ƒxsx, bd ,

a + h .c1

¢ = hF¿sc1d ,

Fsxd = ƒsx, b + kd - ƒsx, bd .

¢ = Fsa + hd - Fsad ,

sa + h, b + kd
ƒyxƒ, ƒx, ƒy, ƒxy ,

ƒyxsa, bdƒxysa, bd

x

y

R

0

h

k R'

(a, b)

FIGURE A.12 The key to proving
is that no matter how

small is, and take on equal
values somewhere inside (although not
necessarily at the same point).

R¿

ƒyxƒxyR¿

ƒxysa, bd = ƒyxsa, bd
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for some between b and By Equation (7),

(9)

Substituting from Equation (9) into Equation (8) gives

Finally, we apply the Mean Value Theorem to the expression in brackets and get

(10)

for some between a and 
Together, Equations (5) and (10) show that

(11)

where and both lie in the rectangle (Figure A.12). Equation (11) is
not quite the result we want, since it says only that has the same value at that

has at The numbers h and k in our discussion, however, may be made as
small as we wish. The hypothesis that and are both continuous at (a, b) means
that and where each of

as both Hence, if we let h and we have

The equality of and can be proved with hypotheses weaker than the
ones we assumed. For example, it is enough for and to exist in R and for to be
continuous at (a, b). Then will exist at (a, b) and equal at that point.ƒxyƒyx

ƒxyƒyƒ, ƒx ,
ƒyxsa, bdƒxysa, bd

ƒxysa, bd = ƒyxsa, bd .
k : 0,h, k : 0.P1, P2 : 0

ƒyxsc2, d2d = ƒyxsa, bd + P2 ,ƒxysc1, d1d = ƒxysa, bd + P1

ƒyxƒxy

sc2, d2d .ƒyx

sc1, d1dƒxy

R¿sc2, d2dsc1, d1d

ƒxysc1, d1d = ƒyxsc2, d2d ,

a + h .c2

¢ = khƒyxsc2, d2d

¢ = k[ƒysa + h, d2d - ƒysa, d2d] .

f¿s yd = ƒysa + h, yd - ƒysa, yd .

b + k .d2
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THEOREM 3 The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of are defined throughout an
open region R containing the point and that and are continuous at

Then the change in the value
of ƒ that results from moving from to another point 
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y ,

sx0 + ¢x, y0 + ¢ydsx0, y0d
¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0dsx0, y0d .

ƒyƒxsx0, y0d
z = ƒsx, yd

Proof We work within a rectangle T centered at and lying within R, and we
assume that and are already so small that the line segment joining A to

and the line segment joining B to lie in the interior
of T (Figure A.13).

We may think of as the sum of two increments, where

is the change in the value of ƒ from A to B and

is the change in the value of ƒ from B to C (Figure A.14).

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d

¢z = ¢z1 + ¢z2¢z

Csx0 + ¢x, y0 + ¢ydBsx0 + ¢x, y0d
¢y¢x

Asx0, y0d

T

C(x0 � �x, y0 � �y)

B(x0 � �x, y0)

A(x0, y0)

FIGURE A.13 The rectangular region
T in the proof of the Increment Theorem.
The figure is drawn for and 
positive, but either increment might be
zero or negative.

¢y¢x
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P''
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Q'
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0

y0

P0

y0 � �y

(x0 � �x, y0) C(x0 � �x, y0 � �y)

A(x0, y0)

z � f (x, y)

� z1

� z2

� z

FIGURE A.14 Part of the surface near The
points and have the same height above the xy-plane. The
change in z is The change

shown as is caused by changing x from to while
holding y equal to Then, with x held equal to 

is the change in z caused by changing from which is represented by
The total change in z is the sum of and ¢z2 .¢z1Q¿S?

y0 + ¢y ,y0

¢z2 = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, y0d

x0 + ¢x ,y0 .
x0 + ¢xx0P–Q = P¿Q¿ ,

¢z1 = ƒsx0 + ¢x, y0d - ƒsx0, y0d ,

¢z = P¿S .
z0 = ƒsx0, y0dP–P0, P¿,

P0sx0, y0, ƒsx0, y0dd .z = ƒsx, yd

On the closed interval of x-values joining to the function 
is a differentiable (and hence continuous) function of x, with derivative

By the Mean Value Theorem (Theorem 4, Section 4.2), there is an x-value c between 
and at which

or

or

(12)

Similarly, is a differentiable (and hence continuous) function
of y on the closed y-interval joining and with derivative

G¿s yd = ƒysx0 + ¢x, yd.

y0 + ¢y ,y0

Gs yd = ƒsx0 + ¢x, yd

¢z1 = ƒxsc, y0d¢x .

ƒsx0 + ¢x, y0d - ƒsx0, y0d = ƒxsc, y0d¢x

Fsx0 + ¢xd - Fsx0d = F¿scd¢x

x0 + ¢x
x0

F¿sxd = ƒxsx, y0d .

Fsxd = ƒsx, y0dx0 + ¢x,x0
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Hence, there is a y-value d between and at which

or

or

(13)

Now, as both and we know that and Therefore, since 
and are continuous at the quantities

(14)

both approach zero as both and 
Finally,

where both and as both  and  which is what we set out to prove.

Analogous results hold for functions of any finite number of independent variables.
Suppose that the first partial derivatives of are defined throughout an open
region containing the point and that and are continuous at 
Then

(15)

where as and 
The partial derivatives in Equation (15) are to be evaluated at the point

Equation (15) can be proved by treating as the sum of three increments,

(16)

(17)

(18)

and applying the Mean Value Theorem to each of these separately. Two coordinates remain
constant and only one varies in each of these partial increments In Equa-
tion (17), for example, only y varies, since x is held equal to and z is held equal to

Since is a continuous function of y with a derivative it is subject
to the Mean Value Theorem, and we have

for some between and y0 + ¢y .y0y1

¢w2 = ƒysx0 + ¢x, y1, z0d¢y

ƒy ,ƒsx0 + ¢x, y, z0dz0 .
x0 + ¢x

¢w1, ¢w2, ¢w3 .

 ¢w3 = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0 + ¢x, y0 + ¢y, z0d ,

 ¢w2 = ƒsx0 + ¢x, y0 + ¢y, z0d - ƒsx0 + ¢x, y0, z0d

 ¢w1 = ƒsx0 + ¢x, y0, z0d - ƒsx0, y0, z0d

¢w
sx0, y0, z0d .

ƒx, ƒy, ƒz

¢z : 0.¢x, ¢y ,P1, P2, P3 : 0

 = ƒx¢x + ƒy¢y + ƒz¢z + P1¢x + P2¢y + P3¢z, 

 ¢w = ƒsx0 + ¢x, y0 + ¢y, z0 + ¢zd - ƒsx0, y0, z0d

sx0, y0, z0d .ƒzƒx, ƒy ,sx0, y0, z0d
w = ƒsx, y, zd

¢y : 0,¢xP2 : 0P1

 = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y, 

 = [ƒxsx0, y0d + P1]¢x + [ƒysx0, y0d + P2]¢y

 = ƒxsc, y0d¢x + ƒysx0 + ¢x, dd¢y

 ¢z = ¢z1 + ¢z2

¢y : 0.¢x

 P2 = ƒysx0 + ¢x, dd - ƒysx0, y0d

 P1 = ƒxsc, y0d - ƒxsx0, y0d, 

sx0, y0d ,ƒy

ƒxd : y0 .c : x0¢y : 0,¢x

¢z2 = ƒysx0 + ¢x, dd¢y.

ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 + ¢x, yd = ƒysx0 + ¢x, dd¢y

Gs y0 + ¢yd - Gs y0d = G¿sdd¢y

y0 + ¢yy0
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From Equations
(12) and (13)

From Equa-
tion (14)
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