
84 Chapter 2: Limits and Continuity

Calculating Limits Using the Limit Laws

In Section 2.1 we used graphs and calculators to guess the values of limits. This section
presents theorems for calculating limits. The first three let us build on the results of Exam-
ple 8 in the preceding section to find limits of polynomials, rational functions, and powers.
The fourth and fifth prepare for calculations later in the text.

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combina-
tions of functions whose limits we already know.

2.2
HISTORICAL ESSAY*

Limits

THEOREM 1 Limit Laws
If L, M, c and k are real numbers and

1. Sum Rule:

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule:

The limit of the difference of two functions is the difference of their limits.

3. Product Rule:

The limit of a product of two functions is the product of their limits.

lim
x:c

sƒsxd # g sxdd = L # M

lim
x:c

sƒsxd - g sxdd = L - M

lim
x:c

sƒsxd + g sxdd = L + M

lim
x:c

 ƒsxd = L and lim
x:c

 g sxd = M, then

To learn more about the historical figures and the development of the major elements and topics of calcu-
lus, visit www.aw-bc.com/thomas.
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It is easy to convince ourselves that the properties in Theorem 1 are true (although
these intuitive arguments do not constitute proofs). If x is sufficiently close to c, then ƒ(x)
is close to L and g (x) is close to M, from our informal definition of a limit. It is then rea-
sonable that is close to is close to ƒ(x)g (x) is
close to LM; kƒ(x) is close to kL; and that is close to if M is not zero. We
prove the Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are
proved in Appendix 2. Rule 6 is proved in more advanced texts.

Here are some examples of how Theorem 1 can be used to find limits of polynomial
and rational functions.

EXAMPLE 1 Using the Limit Laws

Use the observations and (Example 8 in Section 2.1) and the
properties of limits to find the following limits.

(a) (b) (c)

Solution

(a) Sum and Difference Rules

Product and Multiple Rules

(b) Quotient Rule

Sum and Difference Rules

Power or Product Rule =

c4
+ c2

- 1
c2

+ 5

 =

lim
x:c

 x4
+ lim

x:c
 x2

- lim
x:c

 1

lim
x:c

 x2
+ lim

x:c
 5

 lim
x:c

 
x4

+ x2
- 1

x2
+ 5

=

lim
x:c

sx4
+ x2

- 1d

lim
x:c

sx2
+ 5d

 = c3
+ 4c2

- 3

 lim
x:c

sx3
+ 4x2

- 3d = lim
x:c

 x3
+ lim

x:c
 4x2

- lim
x:c

 3

lim
x: -2

24x2
- 3lim

x:c
 
x4

+ x2
- 1

x2
+ 5

lim
x:c

sx3
+ 4x2

- 3d

limx:c x = climx:c k = k

L>Mƒ(x)>g(x)
L - M ;L + M; ƒsxd - g sxdƒsxd + g sxd
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4. Constant Multiple Rule:

The limit of a constant times a function is the constant times the limit of the
function.

5. Quotient Rule:

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and then

provided that is a real number. (If s is even, we assume that )

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

L 7 0.Lr>s
lim
x:c

sƒsxddr>s
= Lr>s

s Z 0,

lim
x:c

  
ƒsxd
g sxd

=
L
M

, M Z 0

lim
x:c

sk # ƒsxdd = k # L
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(c)

Difference Rule

Product and Multiple Rules

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches c, merely substitute c for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point c at which the denominator is not zero, sub-
stitute c for x in the formula for the function. (See Examples 1a and 1b.)

 = 213

 = 216 - 3

 = 24s -2d2
- 3

 = 2 lim
x: -2

 4x2
- lim

x: -2
 3

Power Rule with r>s =
1�2 lim

x: -2
24x2

- 3 = 2 lim
x: -2

s4x2
- 3d
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THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If then

lim
x:c

 Psxd = Pscd = an cn
+ an - 1 cn - 1

+
Á

+ a0 .

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a0 ,

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and then

lim
x:c

  
Psxd
Qsxd

=

Pscd
Qscd

.

Qscd Z 0,

EXAMPLE 2 Limit of a Rational Function

This result is similar to the second limit in Example 1 with now done in one step.

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and de-
nominator may reduce the fraction to one whose denominator is no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 3 Canceling a Common Factor

Evaluate

lim
x:1

 
x2

+ x - 2
x2

- x
.

c = -1,

lim
x: -1

 
x3

+ 4x2
- 3

x2
+ 5

=

s -1d3
+ 4s -1d2

- 3

s -1d2
+ 5

=

0
6

= 0

Identifying Common Factors
It can be shown that if Q(x) is a
polynomial and then

is a factor of Q(x). Thus, if
the numerator and denominator of a
rational function of x are both zero at

they have as a common
factor.

sx - cdx = c ,

sx - cd
Qscd = 0,
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Solution We cannot substitute because it makes the denominator zero. We test the
numerator to see if it, too, is zero at It is, so it has a factor of in common
with the denominator. Canceling the gives a simpler fraction with the same val-
ues as the original for 

Using the simpler fraction, we find the limit of these values as by substitution:

See Figure 2.8.

EXAMPLE 4 Creating and Canceling a Common Factor

Evaluate

Solution This is the limit we considered in Example 10 of the preceding section. We
cannot substitute and the numerator and denominator have no obvious common
factors. We can create a common factor by multiplying both numerator and denominator
by the expression (obtained by changing the sign after the square root).
The preliminary algebra rationalizes the numerator:

Common factor x2

Cancel x2 for x � 0

Therefore,

This calculation provides the correct answer to the ambiguous computer results in Exam-
ple 10 of the preceding section.

The Sandwich Theorem

The following theorem will enable us to calculate a variety of limits in subsequent chap-
ters. It is called the Sandwich Theorem because it refers to a function ƒ whose values are

 =
1
20

= 0.05.

 =
1202

+ 100 + 10

 lim
x:0

 
2x2

+ 100 - 10
x2 = lim

x:0
 

12x2
+ 100 + 10

 =
12x2

+ 100 + 10
.

 =

x2

x2 A2x2
+ 100 + 10 B

 =

x2
+ 100 - 100

x2 A2x2
+ 100 + 10 B

 
2x2

+ 100 - 10
x2 =

2x2
+ 100 - 10

x2
#
2x2

+ 100 + 102x2
+ 100 + 10

2x2
+ 100 + 10

x = 0,

lim
x:0

 
2x2

+ 100 - 10
x2 .

lim
x:1

 
x2

+ x - 2
x2

- x
= lim

x:1
 
x + 2

x =
1 + 2

1
= 3.

x : 1

x2
+ x - 2

x2
- x

=

sx - 1dsx + 2d
xsx - 1d

=

x + 2
x , if x Z 1.

x Z 1:
sx - 1d’s

sx - 1dx = 1.
x = 1
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x

y

1–2 0

(1, 3)

(b)

3

x

y

10–2

(1, 3)

(a)

3

y � x2 � x � 2
x2 � x

y � x � 2
x

FIGURE 2.8 The graph of
in

part (a) is the same as the graph of
in part (b) except

at where ƒ is undefined. The
functions have the same limit as 
(Example 3).

x : 1
x = 1,

g sxd = sx + 2d>x
ƒsxd = sx2

+ x - 2d>sx2
- xd

Denominator
not 0 at x � 0;
substitute
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sandwiched between the values of two other functions g and h that have the same limit L at
a point c. Being trapped between the values of two functions that approach L, the values of
ƒ must also approach L (Figure 2.9). You will find a proof in Appendix 2.
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x

y

0

L

c

h

f

g

FIGURE 2.9 The graph of ƒ is
sandwiched between the graphs of g and h.

y � �  

y � – �  

y � sin �  

�

1

–1

–� �

y

(a)

y � �  

y � 1 � cos �

�

y

(b)

2

2

1

1–1–2 0

FIGURE 2.11 The Sandwich Theorem confirms that (a) and
(b) (Example 6).lim

 
u:0 s1 - cos ud = 0

lim
 
u:0 sin u = 0

THEOREM 4 The Sandwich Theorem
Suppose that for all x in some open interval containing c,
except possibly at itself. Suppose also that

Then limx:c ƒsxd = L .

lim
x:c

 g sxd = lim
x:c

 hsxd = L .

x = c
g sxd … ƒsxd … hsxd

The Sandwich Theorem is sometimes called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 5 Applying the Sandwich Theorem

Given that

find no matter how complicated u is.

Solution Since

the Sandwich Theorem implies that (Figure 2.10).

EXAMPLE 6 More Applications of the Sandwich Theorem

(a) (Figure 2.11a). It follows from the definition of sin that for all ,
and since we have

lim
u:0

 sin u = 0.

limu:0 ƒ u ƒ = 0,limu:0 s - ƒ u ƒd =

u- ƒ u ƒ … sin u … ƒ u ƒu

limx:0 usxd = 1

lim
x:0

s1 - sx2>4dd = 1 and lim
x:0

s1 + sx2>2dd = 1,

limx:0 usxd ,

1 -

x2

4
… usxd … 1 +

x2

2
 for all x Z 0,

x

y

0 1–1

2

1

y � 1 � x2

2

y � 1 � x2

4

y � u(x)

FIGURE 2.10 Any function u(x)
whose graph lies in the region between

and has
limit 1 as (Example 5).x : 0

y = 1 - sx2>4dy = 1 + sx2>2d
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(b) (Figure 2.11b). From the definition of cos for all and we
have or

(c) For any function ƒ(x), if then The argument:
and and have limit 0 as 

Another important property of limits is given by the next theorem. A proof is given in
the next section.

x : c .ƒ ƒsxd ƒ- ƒ ƒsxd ƒ- ƒ ƒsxd ƒ … ƒsxd … ƒ ƒsxd ƒ

limx:c ƒsxd = 0.limx:c ƒ ƒsxd ƒ = 0,

lim
u:0

 cos u = 1.

limu:0 s1 - cos ud = 0
u ,0 … 1 - cos u … ƒ u ƒu ,
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THEOREM 5 If for all x in some open interval containing c, except
possibly at itself, and the limits of ƒ and g both exist as x approaches c,
then

lim
x:c

 ƒsxd … lim
x:c

 g sxd .

x = c
ƒsxd … g sxd

The assertion resulting from replacing the less than or equal to inequality by the strict
inequality in Theorem 5 is false. Figure 2.11a shows that for 

but in the limit as equality holds.u: 0,- ƒ u ƒ 6 sin u 6 ƒ u ƒ ,
u Z 0,6

…
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