EXERCISES 2.3

Centering Intervals About a Point

In Exercises 1–6, sketch the interval (a, b) on the x-axis with the point x_0 inside. Then find a value of $\delta > 0$ such that for all x, $0 < |x - x_0| < \delta \implies a < x < b$.

1.
$$a = 1$$
, $b = 7$, $x_0 = 5$

2.
$$a = 1$$
, $b = 7$, $x_0 = 2$

3.
$$a = -7/2$$
, $b = -1/2$, $x_0 = -3$

4.
$$a = -7/2$$
, $b = -1/2$, $x_0 = -3/2$

5.
$$a = 4/9$$
, $b = 4/7$, $x_0 = 1/2$

6.
$$a = 2.7591$$
, $b = 3.2391$, $x_0 = 3$

Finding Deltas Graphically

In Exercises 7–14, use the graphs to find a $\delta > 0$ such that for all x

$$0<|x-x_0|<\delta$$

$$|f(x) - L| < \epsilon$$
.

7.

⇒ 8.

9.

10.

11.

12.

99

13. 14.

Finding Deltas Algebraically

Each of Exercises 15–30 gives a function f(x) and numbers L, x_0 and $\epsilon > 0$. In each case, find an open interval about x_0 on which the inequality $|f(x) - L| < \epsilon$ holds. Then give a value for $\delta > 0$ such that for all x satisfying $0 < |x - x_0| < \delta$ the inequality $|f(x) - L| < \epsilon$ holds.

15.
$$f(x) = x + 1$$
, $L = 5$, $x_0 = 4$, $\epsilon = 0.01$

16.
$$f(x) = 2x - 2$$
, $L = -6$, $x_0 = -2$, $\epsilon = 0.02$

17.
$$f(x) = \sqrt{x+1}$$
, $L = 1$, $x_0 = 0$, $\epsilon = 0.1$

18.
$$f(x) = \sqrt{x}$$
, $L = 1/2$, $x_0 = 1/4$, $\epsilon = 0.1$

19.
$$f(x) = \sqrt{19 - x}$$
, $L = 3$, $x_0 = 10$, $\epsilon = 1$

20.
$$f(x) = \sqrt{x-7}$$
, $L = 4$, $x_0 = 23$, $\epsilon = 1$

21.
$$f(x) = 1/x$$
, $L = 1/4$, $x_0 = 4$, $\epsilon = 0.05$

22.
$$f(x) = x^2$$
, $L = 3$, $x_0 = \sqrt{3}$, $\epsilon = 0.1$

23.
$$f(x) = x^2$$
, $L = 4$, $x_0 = -2$, $\epsilon = 0.5$

24.
$$f(x) = 1/x$$
, $L = -1$, $x_0 = -1$, $\epsilon = 0.1$

25.
$$f(x) = x^2 - 5$$
, $L = 11$, $x_0 = 4$, $\epsilon = 1$

26.
$$f(x) = 120/x$$
, $L = 11$, $x_0 = 4$, $\epsilon = 1$

27.
$$f(x) = mx$$
, $m > 0$, $L = 2m$, $x_0 = 2$, $\epsilon = 0.03$

28.
$$f(x) = mx$$
, $m > 0$, $L = 3m$, $x_0 = 3$, $\epsilon = c > 0$

29.
$$f(x) = mx + b$$
, $m > 0$, $L = (m/2) + b$, $x_0 = 1/2$, $\epsilon = c > 0$

30.
$$f(x) = mx + b$$
, $m > 0$, $L = m + b$, $x_0 = 1$, $\epsilon = 0.05$

More on Formal Limits

Each of Exercises 31–36 gives a function f(x), a point x_0 , and a positive number ϵ . Find $L = \lim_{x \to x_0} f(x)$. Then find a number $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$
.

31.
$$f(x) = 3 - 2x$$
, $x_0 = 3$, $\epsilon = 0.02$

32.
$$f(x) = -3x - 2$$
, $x_0 = -1$, $\epsilon = 0.03$

33.
$$f(x) = \frac{x^2 - 4}{x - 2}$$
, $x_0 = 2$, $\epsilon = 0.05$

34.
$$f(x) = \frac{x^2 + 6x + 5}{x + 5}$$
, $x_0 = -5$, $\epsilon = 0.05$

35.
$$f(x) = \sqrt{1-5x}$$
, $x_0 = -3$, $\epsilon = 0.5$

36.
$$f(x) = 4/x$$
, $x_0 = 2$, $\epsilon = 0.4$

Prove the limit statements in Exercises 37-50.

37.
$$\lim_{x \to 0} (9 - x) = 5$$

38.
$$\lim (3x - 7) = 2$$

39.
$$\lim_{x\to 0} \sqrt{x-5} = 2$$

40.
$$\lim_{x \to 0} \sqrt{4 - x} = 2$$

37.
$$\lim_{x \to 4} (9 - x) = 5$$
 38. $\lim_{x \to 3} (3x - 7) = 2$ **39.** $\lim_{x \to 9} \sqrt{x - 5} = 2$ **40.** $\lim_{x \to 0} \sqrt{4 - x} = 2$ **41.** $\lim_{x \to 1} f(x) = 1$ if $f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases}$

42.
$$\lim_{x \to -2} f(x) = 4$$
 if $f(x) = \begin{cases} x^2, & x \neq -2 \\ 1, & x = -2 \end{cases}$

43.
$$\lim_{x \to 1} \frac{1}{x} = 1$$

44.
$$\lim_{x \to \sqrt{3}} \frac{1}{r^2} = \frac{1}{3}$$

45.
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = -6$$
 46. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

46.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

47.
$$\lim_{x \to 1} f(x) = 2$$
 if $f(x) = \begin{cases} 4 - 2x, & x < 1 \\ 6x - 4, & x \ge 1 \end{cases}$

48.
$$\lim_{x \to 0} f(x) = 0$$
 if $f(x) = \begin{cases} 2x, & x < 0 \\ x/2, & x \ge 0 \end{cases}$

49.
$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

50.
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

Theory and Examples

- **51.** Define what it means to say that $\lim_{x\to 0} g(x) = k$. **52.** Prove that $\lim_{x\to c} f(x) = L$ if and only if $\lim_{h\to 0} f(h+c) = L$.
- 53. A wrong statement about limits Show by example that the following statement is wrong.

The number L is the limit of f(x) as x approaches x_0 if f(x) gets closer to L as x approaches x_0 .

Explain why the function in your example does not have the given value of L as a limit as $x \to x_0$.

54. Another wrong statement about limits Show by example that the following statement is wrong.

The number L is the limit of f(x) as x approaches x_0 if, given any $\epsilon > 0$, there exists a value of x for which $|f(x) - L| < \epsilon$.

Explain why the function in your example does not have the given value of L as a limit as $x \rightarrow x_0$.

- **T 55.** Grinding engine cylinders Before contracting to grind engine cylinders to a cross-sectional area of 9 in², you need to know how much deviation from the ideal cylinder diameter of $x_0 = 3.385$ in. you can allow and still have the area come within 0.01 in² of the required 9 in². To find out, you let $A = \pi(x/2)^2$ and look for the interval in which you must hold x to make $|A - 9| \le 0.01$. What interval do you find?
 - 56. Manufacturing electrical resistors Ohm's law for electrical circuits like the one shown in the accompanying figure states that V = RI. In this equation, V is a constant voltage, I is the current in amperes, and R is the resistance in ohms. Your firm has been asked to supply the resistors for a circuit in which V will be 120

volts and I is to be 5 ± 0.1 amp. In what interval does R have to lie for I to be within 0.1 amp of the value $I_0 = 5$?

When Is a Number L Not the Limit of f(x)as $x \rightarrow x_0$?

We can prove that $\lim_{x\to x_0} f(x) \neq L$ by providing an $\epsilon > 0$ such that no possible $\delta > 0$ satisfies the condition

For all
$$x$$
, $0 < |x - x_0| < \delta$ \Rightarrow $|f(x) - L| < \epsilon$.

We accomplish this for our candidate ϵ by showing that for each $\delta > 0$ there exists a value of x such that

$$0 < |x - x_0| < \delta$$
 and $|f(x) - L| \ge \epsilon$.

57. Let
$$f(x) = \begin{cases} x, & x < 1 \\ x + 1, & x > 1. \end{cases}$$

101

a. Let $\epsilon = 1/2$. Show that no possible $\delta > 0$ satisfies the following condition:

For all
$$x$$
, $0 < |x - 1| < \delta$ \Rightarrow $|f(x) - 2| < 1/2$.

That is, for each $\delta > 0$ show that there is a value of x such that

$$0 < |x - 1| < \delta$$
 and $|f(x) - 2| \ge 1/2$.

This will show that $\lim_{x\to 1} f(x) \neq 2$.

- **b.** Show that $\lim_{x\to 1} f(x) \neq 1$.
- c. Show that $\lim_{x\to 1} f(x) \neq 1.5$.

58. Let
$$h(x) = \begin{cases} x^2, & x < 2 \\ 3, & x = 2 \\ 2, & x > 2 \end{cases}$$

Show that

$$\mathbf{a.} \quad \lim_{x \to 0} h(x) \neq 4$$

b.
$$\lim_{x \to 2} h(x) \neq 3$$

c.
$$\lim_{x \to 2} h(x) \neq 2$$

59. For the function graphed here, explain why

a.
$$\lim_{x \to 3} f(x) \neq 4$$

b.
$$\lim_{x \to 3} f(x) \neq 4.8$$

c.
$$\lim_{x \to 3} f(x) \neq 3$$

- **60. a.** For the function graphed here, show that $\lim_{x\to -1} g(x) \neq 2$.
 - **b.** Does $\lim_{x\to -1} g(x)$ appear to exist? If so, what is the value of the limit? If not, why not?

COMPUTER EXPLORATIONS

In Exercises 61–66, you will further explore finding deltas graphically. Use a CAS to perform the following steps:

- **a.** Plot the function y = f(x) near the point x_0 being approached.
- **b.** Guess the value of the limit *L* and then evaluate the limit symbolically to see if you guessed correctly.
- **c.** Using the value $\epsilon = 0.2$, graph the banding lines $y_1 = L \epsilon$ and $y_2 = L + \epsilon$ together with the function f near x_0 .
- **d.** From your graph in part (c), estimate a $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$
.

Test your estimate by plotting f, y_1 , and y_2 over the interval $0 < |x - x_0| < \delta$. For your viewing window use $x_0 - 2\delta \le x \le x_0 + 2\delta$ and $L - 2\epsilon \le y \le L + 2\epsilon$. If any function values lie outside the interval $[L - \epsilon, L + \epsilon]$, your choice of δ was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for $\epsilon=0.1,\,0.05$, and 0.001.

61.
$$f(x) = \frac{x^4 - 81}{x - 3}$$
, $x_0 = 3$

62.
$$f(x) = \frac{5x^3 + 9x^2}{2x^5 + 3x^2}, \quad x_0 = 0$$

63.
$$f(x) = \frac{\sin 2x}{3x}$$
, $x_0 = 0$

64.
$$f(x) = \frac{x(1-\cos x)}{x-\sin x}$$
, $x_0 = 0$

65.
$$f(x) = \frac{\sqrt[3]{x-1}}{x-1}, \quad x_0 = 1$$

66.
$$f(x) = \frac{3x^2 - (7x + 1)\sqrt{x} + 5}{x - 1}, \quad x_0 = 1$$