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One-Sided Limits and Limits at Infinity

In this section we extend the limit concept to one-sided limits, which are limits as x ap-
proaches the number from the left-hand side (where ) or the right-hand side

only. We also analyze the graphs of certain rational functions as well as other
functions with limit behavior as 

One-Sided Limits

To have a limit L as x approaches c, a function ƒ must be defined on both sides of c and its
values ƒ(x) must approach L as x approaches c from either side. Because of this, ordinary
limits are called two-sided.

If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function (Figure 2.21) has limit 1 as x approaches 0 from the right,
and limit as x approaches 0 from the left. Since these one-sided limit values are not the
same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not
have a (two-sided) limit at 0.

Intuitively, if ƒ(x) is defined on an interval (c, b), where and approaches arbi-
trarily close to L as x approaches c from within that interval, then ƒ has right-hand limit L
at c. We write

The symbol means that we consider only values of x greater than c.
Similarly, if ƒ(x) is defined on an interval (a, c), where and approaches arbi-

trarily close to M as x approaches c from within that interval, then ƒ has left-hand limit M
at c. We write

The symbol means that we consider only x values less than c.
These informal definitions are illustrated in Figure 2.22. For the function 

in Figure 2.21 we have

lim
x:0+

 ƒsxd = 1 and lim
x:0-

 ƒsxd = -1.

ƒsxd = x> ƒ x ƒ

“x : c- ”

lim
x:c-

 ƒsxd = M .

a 6 c
“x : c+ ”

lim
x:c+

 ƒsxd = L .

c 6 b ,

-1
ƒsxd = x> ƒ x ƒ

x : ; q .
sx 7 x0d

x 6 x0x0

2.4

x

y

1

0

–1

y �
x
	x	

FIGURE 2.21 Different right-hand and
left-hand limits at the origin.
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lim    f (x) � M(b)(a)
x→c�

FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.
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EXAMPLE 1 One-Sided Limits for a Semicircle

The domain of is its graph is the semicircle in Figure 2.23. We
have

The function does not have a left-hand limit at or a right-hand limit at It
does not have ordinary two-sided limits at either  or 2.

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-
hand limit of the sum of two functions is the sum of their right-hand limits, and so on. The
theorems for limits of polynomials and rational functions hold with one-sided limits, as
does the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the
following way.

-2
x = 2.x = -2

lim
x: -2+

24 - x2
= 0 and lim

x:2-

24 - x2
= 0.

[-2, 2] ;ƒsxd = 24 - x2
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x

y

0 2–2

y � �4 � x2

FIGURE 2.23 and

(Example 1).lim
x: - 2+

24 - x2
= 0

lim
x:2-

24 - x2
= 0

THEOREM 6
A function ƒ(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim
x:c

 ƒsxd = L 3 lim
x:c-

 ƒsxd = L and lim
x:c+

 ƒsxd = L .

EXAMPLE 2 Limits of the Function Graphed in Figure 2.24

At 

and do not exist. The function is not de-
fined to the left of 

At even though 

does not exist. The right- and left-hand limits are not
equal.

At 

even though 

At 

At even though 

and do not exist. The function is not de-
fined to the right of 

At every other point c in [0, 4], ƒ(x) has limit ƒ(c).

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.

x = 4.
limx:4 ƒsxdlimx:4+ ƒsxd

ƒs4d Z 1,limx:4- ƒsxd = 1x = 4:

limx:3- ƒsxd = limx:3+ ƒsxd = limx:3 ƒsxd = ƒs3d = 2.x = 3:

ƒs2d = 2.limx:2 ƒsxd = 1

limx:2+ ƒsxd = 1,

limx:2- ƒsxd = 1,x = 2:

limx:1 ƒsxd
limx:1+ ƒsxd = 1,

ƒs1d = 1,limx:1- ƒsxd = 0x = 1:

x = 0.
limx:0 ƒsxdlimx:0- ƒsxd

limx:0+ ƒsxd = 1,x = 0:

x

y

321

2

1

40

y � f (x)

FIGURE 2.24 Graph of the function
in Example 2.
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EXAMPLE 3 Applying the Definition to Find Delta

Prove that

Solution Let be given. Here and so we want to find a such
that for all x

or

Squaring both sides of this last inequality gives

If we choose we have

or

According to the definition, this shows that  (Figure 2.27).

The functions examined so far have had some kind of limit at each point of interest. In
general, that need not be the case.

EXAMPLE 4 A Function Oscillating Too Much

Show that has no limit as x approaches zero from either side (Figure 2.28).

Solution As x approaches zero, its reciprocal, , grows without bound and the values
of sin ( ) cycle repeatedly from to 1. There is no single number L that the function’s-11>x 1>x

y = sin s1>xd

limx:0+2x = 0

0 6 x 6 P
2 Q ƒ2x - 0 ƒ 6 P .

0 6 x 6 d = P
2 Q 2x 6 P ,

d = P
2

x 6 P
2 if 0 6 x 6 d .

0 6 x 6 d Q 2x 6 P .

0 6 x 6 d Q ƒ2x - 0 ƒ 6 P ,

d 7 0L = 0,x0 = 0P 7 0

lim
x:0+

2x = 0.
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DEFINITIONS Right-Hand, Left-Hand Limits
We say that ƒ(x) has right-hand limit L at and write

(See Figure 2.25)

if for every number there exists a corresponding number such that
for all x

We say that ƒ has left-hand limit L at and write

(See Figure 2.26)

if for every number there exists a corresponding number such that
for all x

x0 - d 6 x 6 x0 Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

-

 ƒsxd = L

x0 ,

x0 6 x 6 x0 + d Q ƒ ƒsxd - L ƒ 6 P .

d 7 0P 7 0

lim
x:x0

+

 ƒsxd = L

x0 ,

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0 x0 � �

y

x
0

L

x
�

f (x) lies
in here

for all x � x0
in here

L � �

L � �
f (x)

x0x0 � �

FIGURE 2.25 Intervals associated with
the definition of right-hand limit.

FIGURE 2.26 Intervals associated with
the definition of left-hand limit.

x

y

�

f (x)

xL � 0 � � �2

 f (x) � �x

FIGURE 2.27 in Example 3.lim
x:0+

1x = 0
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values stay increasingly close to as x approaches zero. This is true even if we restrict x to
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at 

Limits Involving (sin U)/U

A central fact about is that in radian measure its limit as is 1. We can see
this in Figure 2.29 and confirm it algebraically using the Sandwich Theorem.

u: 0ssin ud>u

x = 0.

2.4 One-Sided Limits and Limits at Infinity 105

y




1

NOT TO SCALE

2��–�–2�–3� 3�

y � (radians)sin �
�

FIGURE 2.29 The graph of ƒsud = ssin ud>u .

x

y

0

–1

1

y � sin 1
x

FIGURE 2.28 The function has neither a
right-hand nor a left-hand limit as x approaches zero
(Example 4).

y = sin s1>xd

THEOREM 7

(1)lim
u:0

 
sin u
u

= 1 su in radiansd

Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of less than 
(Figure 2.30). Notice that

Area ¢OAP 6  area sector OAP 6  area ¢OAT .

p>2u

x

y

O

1

1

Q

            

tan �

P

sin � 

cos � 

1

T

A(1, 0)

�

FIGURE 2.30 The figure for the proof of
Theorem 7. but 
so TA = tan u .

OA = 1,TA>OA = tan u ,
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We can express these areas in terms of as follows:

(2)

Thus,

This last inequality goes the same way if we divide all three terms by the number 
( ) which is positive since 

Taking reciprocals reverses the inequalities:

Since (Example 6b, Section 2.2), the Sandwich Theorem gives

Recall that and are both odd functions (Section 1.4). Therefore, 
is an even function, with a graph symmetric about the y-axis (see Figure 2.29).

This symmetry implies that the left-hand limit at 0 exists and has the same value as the
right-hand limit:

so by Theorem 6.

EXAMPLE 5 Using 

Show that (a) and (b)

Solution

(a) Using the half-angle formula we calculate

 = -s1ds0d = 0.

Let u = h>2 . = - lim
u:0

 
sin u
u

 sin u

 lim
h:0

 
cos h - 1

h
= lim

h:0
-

2 sin2 sh>2d
h

cos h = 1 - 2 sin2sh>2d ,

lim
x:0

 
sin 2x

5x
=

2
5 .lim

h:0
 
cos h - 1

h
= 0

lim
u:0

 
sin u
u

= 1

limu:0 ssin ud>u = 1

lim
u:0-

 
sin u
u

= 1 = lim
u:0+

 
sin u
u

,

ssin ud>u ƒsud =usin u

lim
u:0+

 
sin u
u

= 1.

limu:0+ cos u = 1

1 7

sin u
u

7 cos u.

1 6

u
sin u

6
1

cos u
.

0 6 u 6 p>2:sin u ,1>2

1
2

 sin u 6
1
2

 u 6
1
2

 tan u .

Area ¢OAT =
1
2

 base * height =
1
2

 s1dstan ud =
1
2

 tan u .

 Area sector OAP =
1
2

 r2u =
1
2

 s1d2u =

u
2

Area ¢OAP =
1
2

 base * height =
1
2

 s1dssin ud =
1
2

 sin u

u
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Equation (2) is where radian measure
comes in: The area of sector OAP is 
only if is measured in radians.u

u>2

4100 AWL/Thomas_ch02p073-146  8/19/04  11:01 AM  Page 106

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce02.html?2_0_l
bounce02.html?2_1_l


(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by :

Finite Limits as 

The symbol for infinity does not represent a real number. We use to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
For example, the function is defined for all (Figure 2.31). When x is
positive and becomes increasingly large, becomes increasingly small. When x is nega-
tive and its magnitude becomes increasingly large, again becomes small. We summa-
rize these observations by saying that has limit 0 as or that 0 is a
limit of at infinity and negative infinity. Here is a precise definition.ƒsxd = 1>x x : ; qƒsxd = 1>x 1>x1>x x Z 0ƒsxd = 1>x

qs q d

x : — ˆ

 =
2
5 s1d =

2
5

Now, Eq. (1) applies with
u � 2x. =

2
5 lim

x:0
 
sin 2x

2x

 lim
x:0

 
sin 2x

5x
= lim

x:0
 
s2>5d #  sin 2x

s2>5d # 5x

2>5
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y

0

1

–1
1–1 2 3 4

2

3

4

x

1
xy �

FIGURE 2.31 The graph of y = 1>x .

DEFINITIONS Limit as x approaches or 
1. We say that ƒ(x) has the limit L as x approaches infinity and write

if, for every number there exists a corresponding number M such that
for all x

2. We say that ƒ(x) has the limit L as x approaches minus infinity and write

if, for every number there exists a corresponding number N such that
for all x

x 6 N Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: -q

 ƒsxd = L

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

P 7 0,

lim
x: q

 ƒsxd = L

� ˆˆ

Intuitively, if, as x moves increasingly far from the origin in the positive
direction, ƒ(x) gets arbitrarily close to L. Similarly, if, as x moves in-
creasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions and We then extended these results to other functions by applying
a theorem about limits of algebraic combinations. Here we do the same thing, except that
the starting functions are and instead of and y = x .y = ky = 1>xy = k

y = x .y = k

x : ; q

limx:-q ƒsxd = L
limx:q ƒsxd = L
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The basic facts to be verified by applying the formal definition are

(3)

We prove the latter and leave the former to Exercises 71 and 72.

EXAMPLE 6 Limits at Infinity for 

Show that

(a) (b)

Solution

(a) Let be given. We must find a number M such that for all x

The implication will hold if or any larger positive number (Figure 2.32).
This proves 

(b) Let be given. We must find a number N such that for all x

The implication will hold if or any number less than (Figure 2.32).
This proves 

Limits at infinity have properties similar to those of finite limits.

limx:-q s1>xd = 0.
-1>PN = -1>P

x 6 N Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

limx:q s1>xd = 0.
M = 1>P

x 7 M Q ` 1x - 0 ` = ` 1x ` 6 P .

P 7 0

lim
x: -q

  
1
x = 0.lim

x: q

  
1
x = 0

ƒsxd =
1
x

lim
x: ;q

 k = k  and  lim
x: ;q

  
1
x = 0.
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x

y
No matter what
positive number � is,
the graph enters
this band at x �
and stays.

1
�

y � �

M � 1
�

N � – 1
�

y � –�

0

No matter what
positive number � is,
the graph enters
this band at x � –
and stays.

1
�

�

–�

y � 1
x

FIGURE 2.32 The geometry behind the
argument in Example 6.

THEOREM 8 Limit Laws as 
If L, M, and k, are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule:

6. Power Rule: If r and s are integers with no common factors, then

provided that is a real number. (If s is even, we assume that )L 7 0.Lr>s
lim

x: ;q

sƒsxddr>s
= Lr>s

s Z 0,

lim
x: ;q

 
ƒsxd
g sxd

=
L
M

, M Z 0

lim
x: ;q

sk # ƒsxdd = k # L

lim
x: ;q

sƒsxd # g sxdd = L # M

lim
x: ;q

sƒsxd - g sxdd = L - M

lim
x: ;q

sƒsxd + g sxdd = L + M

lim
x: ;q

 ƒsxd = L and lim
x: ;q

 g sxd = M, then

x : — ˆ
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These properties are just like the properties in Theorem 1, Section 2.2, and we use
them the same way.

EXAMPLE 7 Using Theorem 8

(a) Sum Rule

Known limits

(b)

Product rule

Known limits

Limits at Infinity of Rational Functions

To determine the limit of a rational function as we can divide the numerator
and denominator by the highest power of x in the denominator. What happens then de-
pends on the degrees of the polynomials involved.

EXAMPLE 8 Numerator and Denominator of Same Degree

EXAMPLE 9 Degree of Numerator Less Than Degree of Denominator

We give an example of the case when the degree of the numerator is greater than the
degree of the denominator in the next section (Example 8, Section 2.5).

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph ap-
proaches the line asymptotically and that the line is an asymptote of the graph.

Looking at (See Figure 2.31), we observe that the x-axis is an asymptote
of the curve on the right because

and on the left because

lim
x: -q

 
1
x = 0.

lim
x: q

 
1
x = 0

ƒsxd = 1>x

 =

0 + 0
2 - 0

= 0

 lim
x: -q

 
11x + 2
2x3

- 1
= lim

x: -q

 
s11>x2d + s2>x3d

2 - s1>x3d

 =

5 + 0 - 0
3 + 0

=

5
3

 lim
x: q

 
5x2

+ 8x - 3
3x2

+ 2
= lim

x: q

 
5 + s8>xd - s3>x2d

3 + s2>x2d

x : ; q ,

 = p23 # 0 # 0 = 0

 = lim
x: -q

 p23 # lim
x: -q

 
1
x

# lim
x: -q

 
1
x

 lim
x: -q

 
p23

x2 = lim
x: -q

 p23 # 1
x

# 1
x

 = 5 + 0 = 5

 lim
x: q

a5 +
1
x b = lim

x: q

 5 + lim
x: q

 
1
x
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Divide numerator and
denominator by x2.

Divide numerator and
denominator by x3.

See Fig. 2.33.

See Fig. 2.34.

x

y

0

–1

–2

1

2

5–5 10

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

Line y � 5
3

FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line as increases.ƒ x ƒy = 5>3

x

y

0

–2

–4

–6

–8

2–2–4 4 6

2

4

6

8
y �

11x � 2

2x3 � 1

FIGURE 2.34 The graph of the
function in Example 9. The graph
approaches the x-axis as increases.ƒ x ƒ
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We say that the x-axis is a horizontal asymptote of the graph of ƒsxd = 1>x .

110 Chapter 2: Limits and Continuity

DEFINITION Horizontal Asymptote
A line is a horizontal asymptote of the graph of a function if
either

lim
x: q

 ƒsxd = b or lim
x: -q

 ƒsxd = b .

y = ƒsxdy = b

The curve

sketched in Figure 2.33 (Example 8) has the line as a horizontal asymptote on
both the right and the left because

EXAMPLE 10 Substituting a New Variable

Find 

Solution We introduce the new variable From Example 6, we know that 
as (see Figure 2.31). Therefore,

The Sandwich Theorem Revisited

The Sandwich Theorem also holds for limits as 

EXAMPLE 11 A Curve May Cross Its Horizontal Asymptote

Using the Sandwich Theorem, find the horizontal asymptote of the curve

Solution We are interested in the behavior as Since

and we have by the SandwichTheorem. Hence,

and the line is a horizontal asymptote of the curve on both left and right (Figure 2.35).y = 2

lim
x: ;q

a2 +

sin x
x b = 2 + 0 = 2,

limx:;q ssin xd>x = 0limx:;q ƒ 1>x ƒ = 0,

0 … ` sin x
x ` … ` 1x `

x : ; q .

y = 2 +

sin x
x .

x : ; q .

lim
x: q

 sin 
1
x = lim

t:0+

 sin t = 0.

x : q

t : 0+t = 1>x .

lim
x: q

 sin s1>xd .

lim
x: q

 ƒsxd =

5
3
 and lim

x: -q

 ƒsxd =

5
3

.

y = 5>3
ƒsxd =

5x2
+ 8x - 3

3x2
+ 2

x

y

1

0

2

2��–�–2�–3� 3�

y � 2 � sin x
x

FIGURE 2.35 A curve may cross one of
its asymptotes infinitely often (Example
11).
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This example illustrates that a curve may cross one of its horizontal asymptotes, per-
haps many times.

Oblique Asymptotes

If the degree of the numerator of a rational function is one greater than the degree of the
denominator, the graph has an oblique (slanted) asymptote. We find an equation for the
asymptote by dividing numerator by denominator to express ƒ as a linear function plus a
remainder that goes to zero as Here’s an example.

EXAMPLE 12 Finding an Oblique Asymptote

Find the oblique asymptote for the graph of

in Figure 2.36.

Solution By long division, we find

As the remainder, whose magnitude gives the vertical distance between the
graphs of ƒ and g, goes to zero, making the (slanted) line

an asymptote of the graph of ƒ (Figure 2.36). The line is an asymptote both to
the right and to the left. In the next section you will see that the function ƒ(x) grows arbi-
trarily large in absolute value as x approaches where the denominator becomes zero
(Figure 2.36).

-4>7,

y = g sxd

g sxd =
2
7 x -

8
49

x : ; q ,

 

= a27 x -

8
49
b +

-115
49s7x + 4d

('')''* ('')''*

linear function gsxd remainder

 ƒsxd =

2x2
- 3

7x + 4

ƒsxd =

2x2
- 3

7x + 4

x : ; q .
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x

y

2–2–4

2

–2

–4

4

4

y �
2x2 � 3
7x � 4

FIGURE 2.36 The function in Example
12 has an oblique asymptote.
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