Chapter 2

Ouestions to Guide Your Review

- 1. What is the average rate of change of the function g(t) over the interval from t = a to t = b? How is it related to a secant line?
- 2. What limit must be calculated to find the rate of change of a function g(t) at $t = t_0$?
- 3. What is an informal or intuitive definition of the limit

$$\lim_{x \to x_0} f(x) = L?$$

Why is the definition "informal"? Give examples.

- **4.** Does the existence and value of the limit of a function f(x) as x approaches x_0 ever depend on what happens at $x = x_0$? Explain and give examples.
- 5. What function behaviors might occur for which the limit may fail to exist? Give examples.
- **6.** What theorems are available for calculating limits? Give examples of how the theorems are used.

- 7. How are one-sided limits related to limits? How can this relationship sometimes be used to calculate a limit or prove it does not exist? Give examples.
- **8.** What is the value of $\lim_{\theta \to 0} ((\sin \theta)/\theta)$? Does it matter whether θ is measured in degrees or radians? Explain.
- 9. What exactly does $\lim_{x\to x_0} f(x) = L$ mean? Give an example in which you find a $\delta > 0$ for a given f, L, x_0 , and $\epsilon > 0$ in the precise definition of limit.
- 10. Give precise definitions of the following statements.
 - **a.** $\lim_{x\to 2^-} f(x) = 5$
- **b.** $\lim_{x\to 2^+} f(x) = 5$
- c. $\lim_{x\to 2} f(x) = \infty$
- **d.** $\lim_{x\to 2} f(x) = -\infty$
- 11. What exactly do $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to-\infty} f(x) = L$ mean? Give examples.
- **12.** What are $\lim_{x\to\pm\infty} k$ (k a constant) and $\lim_{x\to\pm\infty} (1/x)$? How do you extend these results to other functions? Give examples.
- 13. How do you find the limit of a rational function as $x \to \pm \infty$? Give examples.
- 14. What are horizontal, vertical, and oblique asymptotes? Give examples.
- **15.** What conditions must be satisfied by a function if it is to be continuous at an interior point of its domain? At an endpoint?
- 16. How can looking at the graph of a function help you tell where the function is continuous?
- 17. What does it mean for a function to be right-continuous at a point? Left-continuous? How are continuity and one-sided continuity related?
- **18.** What can be said about the continuity of polynomials? Of rational functions? Of trigonometric functions? Of rational powers and al-

- gebraic combinations of functions? Of composites of functions? Of absolute values of functions?
- **19.** Under what circumstances can you extend a function f(x) to be continuous at a point x = c? Give an example.
- **20.** What does it mean for a function to be continuous on an interval?
- 21. What does it mean for a function to be continuous? Give examples to illustrate the fact that a function that is not continuous on its entire domain may still be continuous on selected intervals within the domain.
- **22.** What are the basic types of discontinuity? Give an example of each. What is a removable discontinuity? Give an example.
- **23.** What does it mean for a function to have the Intermediate Value Property? What conditions guarantee that a function has this property over an interval? What are the consequences for graphing and solving the equation f(x) = 0?
- **24.** It is often said that a function is continuous if you can draw its graph without having to lift your pen from the paper. Why is that?
- **25.** What does it mean for a line to be tangent to a curve *C* at a point *P*?
- 26. What is the significance of the formula

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}?$$

Interpret the formula geometrically and physically.

- **27.** How do you find the tangent to the curve y = f(x) at a point (x_0, y_0) on the curve?
- **28.** How does the slope of the curve y = f(x) at $x = x_0$ relate to the function's rate of change with respect to x at $x = x_0$? To the derivative of f at x_0 ?