
OVERVIEW  In Chapter 2, we defined the slope of a curve at a point as the limit of secant
slopes. This limit, called a derivative, measures the rate at which a function changes, and it
is one of the most important ideas in calculus. Derivatives are used to calculate velocity
and acceleration, to estimate the rate of spread of a disease, to set levels of production so
as to maximize efficiency, to find the best dimensions of a cylindrical can, to find the age
of a prehistoric artifact, and for many other applications. In this chapter, we develop tech-
niques to calculate derivatives easily and learn how to use derivatives to approximate com-
plicated functions.
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DIFFERENTIATION

C h a p t e r

3 

The Derivative as a Function

At the end of Chapter 2, we defined the slope of a curve at the point where
to be

We called this limit, when it existed, the derivative of ƒ at We now investigate the
derivative as a function derived from ƒ by considering the limit at each point of the do-
main of ƒ.

x0 .

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0

y = ƒsxd

3.1

HISTORICAL ESSAY

The Derivative

DEFINITION Derivative Function
The derivative of the function ƒ(x) with respect to the variable x is the function

whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿
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We use the notation ƒ(x) rather than simply ƒ in the definition to emphasize the inde-
pendent variable x, which we are differentiating with respect to. The domain of is the set
of points in the domain of ƒ for which the limit exists, and the domain may be the same or
smaller than the domain of ƒ. If exists at a particular x, we say that ƒ is differentiable
(has a derivative) at x. If exists at every point in the domain of ƒ, we call ƒ differen-
tiable.

If we write then and h approaches 0 if and only if z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.1).

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿

148 Chapter 3: Differentiation

Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Examples 2 and 3 of Section 2.7 illustrate
the differentiation process for the functions and Example 2 shows
that

For instance,

In Example 3, we see that

Here are two more examples.

EXAMPLE 1 Applying the Definition

Differentiate 

Solution Here we have ƒsxd =

x
x - 1

ƒsxd =

x
x - 1

 .

d
dx
a1x b = -

1
x2 .

d
dx

 a3
2

 x - 4b =

3
2

.

d
dx

 smx + bd = m .

y = 1>x .y = mx + b
ƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,

x z

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function ƒ depends on how we label the
points involved.
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and

EXAMPLE 2 Derivative of the Square Root Function

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the equivalent form to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.2):

We consider the derivative of when in Example 6.x = 0y = 1x

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
11z + 1x

=
1

21x
 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.y = 1x

 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-

x
x - 1

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , so
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You will often need to know the
derivative of for 

d
dx

 1x =

1
21x

.

x 7 0:1x

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.2 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x
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Notations

There are many ways to denote the derivative of a function where the independ-
ent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

The symbols and D indicate the operation of differentiation and are called
differentiation operators. We read as “the derivative of y with respect to x,” and

and ( )ƒ(x) as “the derivative of ƒ with respect to x.” The “prime” notations 
and come from notations that Newton used for derivatives. The notations are simi-
lar to those used by Leibniz. The symbol should not be regarded as a ratio (until we
introduce the idea of “differentials” in Section 3.8).

Be careful not to confuse the notation D(ƒ) as meaning the domain of the function ƒ
instead of the derivative function The distinction should be clear from the context.

To indicate the value of a derivative at a specified number we use the notation

For instance, in Example 2b we could write

To evaluate an expression, we sometimes use the right bracket ] in place of the vertical bar 

Graphing the Derivative

We can often make a reasonable plot of the derivative of by estimating the slopes
on the graph of ƒ. That is, we plot the points in the xy-plane and connect them
with a smooth curve, which represents 

EXAMPLE 3 Graphing a Derivative

Graph the derivative of the function in Figure 3.3a.

Solution We sketch the tangents to the graph of ƒ at frequent intervals and use their
slopes to estimate the values of at these points. We plot the corresponding 
pairs and connect them with a smooth curve as sketched in Figure 3.3b.

What can we learn from the graph of At a glance we can see

1. where the rate of change of ƒ is positive, negative, or zero;

2. the rough size of the growth rate at any x and its size in relation to the size of ƒ(x);

3. where the rate of change itself is increasing or decreasing.

Here’s another example.

EXAMPLE 4 Concentration of Blood Sugar

On April 23, 1988, the human-powered airplane Daedalus flew a record-breaking 119 km
from Crete to the island of Santorini in the Aegean Sea, southeast of mainland Greece. Dur-

y = ƒ¿sxd?

sx, ƒ¿sxddƒ¿sxd

y = ƒsxd

y = ƒ¿sxd .
sx, ƒ¿sxdd

y = ƒsxd

ƒ .

ƒ¿s4d =

d
dx

 1x `
x = 4

=
1

21x
`
x = 4

=
1

224
=

1
4

.

ƒ¿sad =

dy
dx
`
x = a

=

df
dx
`
x = a

=

d
dx

 ƒsxd `
x = a

.

x = a ,
ƒ¿ .

dy>dx
d>dxƒ¿

y¿d>dxdƒ>dx
dy>dx

d>dx

ƒ¿sxd = y¿ =

dy
dx

=

dƒ
dx

=

d
dx

 ƒsxd = Dsƒdsxd = Dx ƒsxd .

y = ƒsxd ,
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ing the 6-hour endurance tests before the flight, researchers monitored the prospective pilots’
blood-sugar concentrations. The concentration graph for one of the athlete-pilots is shown in
Figure 3.4a, where the concentration in milligrams deciliter is plotted against time in hours.

The graph consists of line segments connecting data points. The constant slope of
each segment gives an estimate of the derivative of the concentration between measure-
ments. We calculated the slope of each segment from the coordinate grid and plotted the
derivative as a step function in Figure 3.4b. To make the plot for the first hour, for in-
stance, we observed that the concentration increased from about 79 mg dL to 93 mg dL.
The net increase was Dividing this by gave
the rate of change as

Notice that we can make no estimate of the concentration’s rate of change at times
where the graph we have drawn for the concentration has a corner and no

slope. The derivative step function is not defined at these times.
t = 1, 2, Á , 5 ,

¢y

¢t
=

14
1

= 14 mg>dL per hour .

¢t = 1 hour¢y = 93 - 79 = 14 mg>dL.
>>

>
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FIGURE 3.3 We made the graph of in (b) by plotting slopes from the
graph of in (a). The vertical coordinate of is the slope at B and so on. The
graph of is a visual record of how the slope of ƒ changes with x.ƒ¿

B¿y = ƒsxd
y = ƒ¿sxd
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Differentiable on an Interval; One-Sided Derivatives

A function is differentiable on an open interval (finite or infinite) if it has a de-
rivative at each point of the interval. It is differentiable on a closed interval [a, b] if it is
differentiable on the interior (a, b) and if the limits

Right-hand derivative at a

Left-hand derivative at b

exist at the endpoints (Figure 3.5).
Right-hand and left-hand derivatives may be defined at any point of a function’s do-

main. The usual relation between one-sided and two-sided limits holds for these derivatives.
Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it
has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 5 Is Not Differentiable at the Origin

Show that the function is differentiable on and but has no deriva-
tive at 

Solution To the right of the origin,

To the left,

ƒ x ƒ = -x
d
dx

 s ƒ x ƒ d =

d
dx

 s -xd =

d
dx

 s -1 # xd = -1

ƒ x ƒ = x
d
dx

 smx + bd = m ,
d
dx

 s ƒ x ƒ d =

d
dx

 sxd =

d
dx

 s1 # xd = 1.

x = 0.
s0, q ds - q , 0dy = ƒ x ƒ

y = ƒ x ƒ

lim
h:0-

 
ƒsb + hd - ƒsbd

h

lim
h:0+

 
ƒsa + hd - ƒsad

h

y = ƒsxd
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FIGURE 3.4 (a) Graph of the sugar concentration in the blood of a Daedalus pilot
during a 6-hour preflight endurance test. (b) The derivative of the pilot’s blood-sugar
concentration shows how rapidly the concentration rose and fell during various portions
of the test.

a ba � h
h � 0

b � h
h � 0

lim
h→0�

f (a � h) � f (a)
h

Slope �

y � f (x)

lim
h→0�

f (b � h) � f (b)
h

Slope �

x

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.
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(Figure 3.6). There can be no derivative at the origin because the one-sided derivatives dif-
fer there:

EXAMPLE 6 Is Not Differentiable at 

In Example 2 we found that for 

We apply the definition to examine if the derivative exists at 

Since the (right-hand) limit is not finite, there is no derivative at Since the slopes
of the secant lines joining the origin to the points on a graph of ap-
proach the graph has a vertical tangent at the origin.

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point if the slopes of the secant lines through
and a nearby point Q on the graph approach a limit as Q approaches P. When-

ever the secants fail to take up a limiting position or become vertical as Q approaches P,
the derivative does not exist. Thus differentiability is a “smoothness” condition on the
graph of ƒ. A function whose graph is otherwise smooth will fail to have a derivative at a
point for several reasons, such as at points where the graph has

1. a corner, where the one-sided 2. a cusp, where the slope of PQ
derivatives differ. approaches from one side and 

from the other.

P

Q�

Q�

P

Q� Q�

- qq

Psx0, ƒsx0dd
x0

q ,
y = 1xAh, 1h B x = 0.

lim
h:0+

 
20 + h - 20

h
= lim

h:0+

 
11h

= q .

x = 0:

d
dx

 1x =
1

21x
 .

x 7 0,

x = 0y = 1x

 = lim
h:0-

- 1 = -1.

 = lim
h:0-

 
-h
h

 Left-hand derivative of ƒ x ƒ at zero = lim
h:0-

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0-

 
ƒ h ƒ

h

 = lim
h:0+

1 = 1

 = lim
h:0+

 
h
h

 Right-hand derivative of ƒ x ƒ at zero = lim
h:0+

 
ƒ 0 + h ƒ - ƒ 0 ƒ

h
= lim

h:0+

 
ƒ h ƒ

h
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x

y

0
y' not defined at x � 0:
right-hand derivative
� left-hand derivative

y' � –1 y' � 1

y �x

FIGURE 3.6 The function is
not differentiable at the origin where
the graph has a “corner.”

y = ƒ x ƒ

ƒ h ƒ = h when h 7 0.

ƒ h ƒ = -h when h 6 0.
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3. a vertical tangent, where the slope of PQ approaches from both sides or
approaches from both sides (here, ).

4. a discontinuity.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

P

Q�

Q�

P

Q�

Q�

P

Q�

Q�

- q- q

q
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THEOREM 1 Differentiability Implies Continuity
If ƒ has a derivative at then ƒ is continuous at x = c .x = c ,

Proof Given that exists, we must show that or equivalently,
that If then

 = ƒscd +

ƒsc + hd - ƒscd
h

# h .

 ƒsc + hd = ƒscd + sƒsc + hd - ƒscdd

h Z 0,limh:0 ƒsc + hd = ƒscd .
limx:c ƒsxd = ƒscd ,ƒ¿scd
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Now take limits as By Theorem 1 of Section 2.2,

Similar arguments with one-sided limits show that if ƒ has a derivative from one side
(right or left) at then ƒ is continuous from that side at 

Theorem 1 on page 154 says that if a function has a discontinuity at a point (for in-
stance, a jump discontinuity), then it cannot be differentiable there. The greatest integer
function fails to be differentiable at every integer (Example 4,
Section 2.6).

CAUTION The converse of Theorem 1 is false. A function need not have a derivative at a
point where it is continuous, as we saw in Example 5.

The Intermediate Value Property of Derivatives

Not every function can be some function’s derivative, as we see from the following theorem.

x = ny = :x; = int x

x = c .x = c

 = ƒscd .

 = ƒscd + 0

 = ƒscd + ƒ¿scd # 0

 lim
h:0

 ƒsc + hd = lim
h:0

 ƒscd + lim
h:0

 
ƒsc + hd - ƒscd

h
# lim

h:0
h

h : 0.
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x

y

0

1
y � U(x)

FIGURE 3.7 The unit step
function does not have the
Intermediate Value Property and
cannot be the derivative of a
function on the real line.

THEOREM 2
If a and b are any two points in an interval on which ƒ is differentiable, then 
takes on every value between and ƒ¿sbd .ƒ¿sad

ƒ¿

Theorem 2 (which we will not prove) says that a function cannot be a derivative on an in-
terval unless it has the Intermediate Value Property there. For example, the unit step func-
tion in Figure 3.7 cannot be the derivative of any real-valued function on the real line. In
Chapter 5 we will see that every continuous function is a derivative of some function.

In Section 4.4, we invoke Theorem 2 to analyze what happens at a point on the graph
of a twice-differentiable function where it changes its “bending” behavior.
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