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The Derivative as a Rate of Change

In Section 2.1, we initiated the study of average and instantaneous rates of change. In this
section, we continue our investigations of applications in which derivatives are used to
model the rates at which things change in the world around us. We revisit the study of mo-
tion along a line and examine other applications.

It is natural to think of change as change with respect to time, but other variables can
be treated in the same way. For example, a physician may want to know how change in
dosage affects the body’s response to a drug. An economist may want to study how the cost
of producing steel varies with the number of tons produced.

Instantaneous Rates of Change

If we interpret the difference quotient as the average rate of change
in ƒ over the interval from x to we can interpret its limit as as the rate at
which ƒ is changing at the point x.

h : 0x + h ,
sƒsx + hd - ƒsxdd>h

3.3

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of ƒ with respect to x at is the derivative

provided the limit exists.

ƒ¿sx0d = lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
,

x0

Thus, instantaneous rates are limits of average rates.
It is conventional to use the word instantaneous even when x does not represent time.

The word is, however, frequently omitted. When we say rate of change, we mean
instantaneous rate of change.
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EXAMPLE 1 How a Circle’s Area Changes with Its Diameter

The area A of a circle is related to its diameter by the equation

How fast does the area change with respect to the diameter when the diameter is 10 m?

Solution The rate of change of the area with respect to the diameter is

When the area is changing at rate 

Motion Along a Line: Displacement, Velocity, Speed,
Acceleration, and Jerk

Suppose that an object is moving along a coordinate line (say an s-axis) so that we know
its position s on that line as a function of time t:

The displacement of the object over the time interval from t to (Figure 3.12) is

and the average velocity of the object over that time interval is

To find the body’s velocity at the exact instant t, we take the limit of the average ve-
locity over the interval from t to as shrinks to zero. This limit is the derivative of
ƒ with respect to t.

¢tt + ¢t

yay =

displacement
travel time

=

¢s
¢t

=

ƒst + ¢td - ƒstd
¢t

.

¢s = ƒst + ¢td - ƒstd ,

t + ¢t

s = ƒstd .

sp>2d10 = 5p m2>m.D = 10 m,

dA
dD

=
p
4

# 2D =
pD
2

.

A =
p
4

 D2 .
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DEFINITION Velocity
Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time t is then the body’s velocity at time t is

ystd =

ds
dt

= lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
.

s = ƒstd ,

EXAMPLE 2 Finding the Velocity of a Race Car

Figure 3.13 shows the time-to-distance graph of a 1996 Riley & Scott Mk III-Olds WSC
race car. The slope of the secant PQ is the average velocity for the 3-sec interval from

to in this case, it is about 100 ft sec or 68 mph.
The slope of the tangent at P is the speedometer reading at about 57 ft sec

or 39 mph. The acceleration for the period shown is a nearly constant during28.5 ft>sec2
>t = 2 sec,

>t = 5 sec;t = 2

s
∆s

Position at time t … and at time t � ∆ t

s � f (t) s � ∆s � f (t � ∆t)

FIGURE 3.12 The positions of a body
moving along a coordinate line at time t
and shortly later at time t + ¢t .

4100 AWL/Thomas_ch03p147-243  8/19/04  11:16 AM  Page 172

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


each second, which is about 0.89g, where g is the acceleration due to gravity. The race
car’s top speed is an estimated 190 mph. (Source: Road and Track, March 1997.)

Besides telling how fast an object is moving, its velocity tells the direction of motion.
When the object is moving forward (s increasing), the velocity is positive; when the body
is moving backward (s decreasing), the velocity is negative (Figure 3.14).
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FIGURE 3.13 The time-to-distance graph for
Example 2. The slope of the tangent line at P is the
instantaneous velocity at t = 2 sec.
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s

0
s increasing:
positive slope so
moving forward

0
s decreasing:
negative slope so
moving backward

s � f (t) s � f (t)

ds
dt

� 0 ds
dt

� 0

FIGURE 3.14 For motion along a straight line, is
positive when s increases and negative when s decreases.

y = ds/dts = ƒstd

If we drive to a friend’s house and back at 30 mph, say, the speedometer will show 30
on the way over but it will not show on the way back, even though our distance from
home is decreasing. The speedometer always shows speed, which is the absolute value of
velocity. Speed measures the rate of progress regardless of direction.

-30
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EXAMPLE 3 Horizontal Motion

Figure 3.15 shows the velocity of a particle moving on a coordinate line. The
particle moves forward for the first 3 sec, moves backward for the next 2 sec, stands still
for a second, and moves forward again. The particle achieves its greatest speed at time

while moving backward.t = 4,

y = ƒ¿std

174 Chapter 3: Differentiation

DEFINITION Speed
Speed is the absolute value of velocity.

Speed = ƒ ystd ƒ = ` ds
dt
`
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FIGURE 3.15 The velocity graph for Example 3.

The rate at which a body’s velocity changes is the body’s acceleration. The accelera-
tion measures how quickly the body picks up or loses speed.

A sudden change in acceleration is called a jerk. When a ride in a car or a bus is jerky,
it is not that the accelerations involved are necessarily large but that the changes in accel-
eration are abrupt.

HISTORICAL BIOGRAPHY

Bernard Bolzano
(1781–1848)
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Near the surface of the Earth all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (Example 1, Section 2.1) lead to the equation

where s is distance and g is the acceleration due to Earth’s gravity. This equation holds in a
vacuum, where there is no air resistance, and closely models the fall of dense, heavy ob-
jects, such as rocks or steel tools, for the first few seconds of their fall, before air resist-
ance starts to slow them down.

The value of g in the equation depends on the units used to measure
t and s. With t in seconds (the usual unit), the value of g determined by measurement at
sea level is approximately (feet per second squared) in English units, and

(meters per second squared) in metric units. (These gravitational con-
stants depend on the distance from Earth’s center of mass, and are slightly lower on top of
Mt. Everest, for example.)

The jerk of the constant acceleration of gravity is zero:

An object does not exhibit jerkiness during free fall.

EXAMPLE 4 Modeling Free Fall

Figure 3.16 shows the free fall of a heavy ball bearing released from rest at time 

(a) How many meters does the ball fall in the first 2 sec?

(b) What is its velocity, speed, and acceleration then?

Solution

(a) The metric free-fall equation is During the first 2 sec, the ball falls

(b) At any time t, velocity is the derivative of position:

ystd = s¿std =

d
dt

 s4.9t2d = 9.8t .

ss2d = 4.9s2d2
= 19.6 m.

s = 4.9t2 .

t = 0 sec.

j =

d
dt

 sgd = 0.

sg = 32 ft>sec2d

g = 9.8 m>sec2
32 ft>sec2

s = s1>2dgt2

s =
1
2

 gt2 ,
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DEFINITIONS Acceleration, Jerk
Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time t is then the body’s acceleration at time t is

Jerk is the derivative of acceleration with respect to time:

jstd =

da
dt

=

d3s
dt3 .

astd =

dy
dt

=

d2s
dt2 .

s = ƒstd ,

0

5

10

15

20

25

30

35

40

45t � 3

s (meters)t (seconds)

t � 0

t � 1

t � 2

FIGURE 3.16 A ball bearing
falling from rest (Example 4).
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At the velocity is

in the downward (increasing s) direction. The speed at is

The acceleration at any time t is

At the acceleration is  

EXAMPLE 5 Modeling Vertical Motion

A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft sec
(about 109 mph) (Figure 3.17a). It reaches a height of after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock when it is 256 ft above the ground on the
way up? On the way down?

(c) What is the acceleration of the rock at any time t during its flight (after the blast)?

(d) When does the rock hit the ground again?

Solution

(a) In the coordinate system we have chosen, s measures height from the ground up, so
the velocity is positive on the way up and negative on the way down. The instant the
rock is at its highest point is the one instant during the flight when the velocity is 0. To
find the maximum height, all we need to do is to find when and evaluate s at
this time.

At any time t, the velocity is

The velocity is zero when

The rock’s height at is

See Figure 3.17b.

(b) To find the rock’s velocity at 256 ft on the way up and again on the way down, we first
find the two values of t for which

To solve this equation, we write

 t = 2 sec, t = 8 sec.

 st - 2dst - 8d = 0

 16st2
- 10t + 16d = 0

 16t2
- 160t + 256 = 0

sstd = 160t - 16t2
= 256.

smax = ss5d = 160s5d - 16s5d2
= 800 - 400 = 400 ft .

t = 5 sec

160 - 32t = 0 or t = 5 sec.

y =

ds
dt

=

d
dt

 s160t - 16t2d = 160 - 32t ft>sec.

y = 0

s = 160t - 16t2 ft
>

9.8 m>sec2 .t = 2,

astd = y¿std = s–std = 9.8 m>sec2 .

Speed = ƒ ys2d ƒ = 19.6 m>sec.

t = 2

ys2d = 19.6 m>sec

t = 2,
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s � 160t � 16t2

y � � 160 � 32tds
dt

FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and y as functions of
time; s is largest when The
graph of s is not the path of the rock: It is a
plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as
a straight line.

y = ds/dt = 0.
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The rock is 256 ft above the ground 2 sec after the explosion and again 8 sec after the
explosion. The rock’s velocities at these times are

At both instants, the rock’s speed is 96 ft sec. Since the rock is moving up-
ward (s is increasing) at it is moving downward (s is decreasing) at 
because 

(c) At any time during its flight following the explosion, the rock’s acceleration is a
constant

The acceleration is always downward. As the rock rises, it slows down; as it falls, it
speeds up.

(d) The rock hits the ground at the positive time t for which The equation
factors to give so it has solutions and

At the blast occurred and the rock was thrown upward. It returned to
the ground 10 sec later.

Derivatives in Economics

Engineers use the terms velocity and acceleration to refer to the derivatives of functions
describing motion. Economists, too, have a specialized vocabulary for rates of change and
derivatives. They call them marginals.

In a manufacturing operation, the cost of production c(x) is a function of x, the num-
ber of units produced. The marginal cost of production is the rate of change of cost with
respect to level of production, so it is .

Suppose that c(x) represents the dollars needed to produce x tons of steel in one week.
It costs more to produce units per week, and the cost difference, divided by h, is the
average cost of producing each additional ton:

The limit of this ratio as is the marginal cost of producing more steel per week
when the current weekly production is x tons (Figure 3.18).

Sometimes the marginal cost of production is loosely defined to be the extra cost of
producing one unit:

which is approximated by the value of at x. This approximation is acceptable if the
slope of the graph of c does not change quickly near x. Then the difference quotient will be
close to its limit , which is the rise in the tangent line if (Figure 3.19). The
approximation works best for large values of x.

¢x = 1dc>dx

dc>dx

¢c
¢x

=

csx + 1d - csxd
1

,

dc
dx

= lim
h:0

 
csx + hd - csxd

h
= marginal cost of production.

h : 0

csx + hd - csxd
h

=

average cost of each of the additional
h tons of steel produced.

x + h

dc>dx

t = 0,t = 10.
t = 016ts10 - td = 0,160t - 16t2

= 0
s = 0.

a =

dy
dt

=

d
dt

 s160 - 32td = -32 ft>sec2 .

ys8d 6 0.
t = 8t = 2 sec;

ys2d 7 0,>
 ys8d = 160 - 32s8d = 160 - 256 = -96 ft>sec.

 ys2d = 160 - 32s2d = 160 - 64 = 96 ft>sec.
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x � h

FIGURE 3.18 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
h tons is csx + hd - csxd .
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FIGURE 3.19 The marginal cost 
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producing more unit.¢x = 1
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Economists often represent a total cost function by a cubic polynomial

where represents fixed costs such as rent, heat, equipment capitalization, and manage-
ment costs. The other terms represent variable costs such as the costs of raw materials,
taxes, and labor. Fixed costs are independent of the number of units produced, whereas
variable costs depend on the quantity produced. A cubic polynomial is usually compli-
cated enough to capture the cost behavior on a relevant quantity interval.

EXAMPLE 6 Marginal Cost and Marginal Revenue

Suppose that it costs

dollars to produce x radiators when 8 to 30 radiators are produced and that

gives the dollar revenue from selling x radiators. Your shop currently produces 10 radiators
a day. About how much extra will it cost to produce one more radiator a day, and what is
your estimated increase in revenue for selling 11 radiators a day?

Solution The cost of producing one more radiator a day when 10 are produced is about

The additional cost will be about $195. The marginal revenue is

The marginal revenue function estimates the increase in revenue that will result from sell-
ing one additional unit. If you currently sell 10 radiators a day, you can expect your rev-
enue to increase by about

if you increase sales to 11 radiators a day.

EXAMPLE 7 Marginal Tax Rate

To get some feel for the language of marginal rates, consider marginal tax rates. If your
marginal income tax rate is 28% and your income increases by $1000, you can expect to
pay an extra $280 in taxes. This does not mean that you pay 28% of your entire income in
taxes. It just means that at your current income level I, the rate of increase of taxes T with
respect to income is You will pay $0.28 out of every extra dollar you earn
in taxes. Of course, if you earn a lot more, you may land in a higher tax bracket and your
marginal rate will increase.

dT>dI = 0.28.

r¿s10d = 3s100d - 6s10d + 12 = $252

r¿sxd =

d
dx

 Ax3
- 3x2

+ 12x B = 3x2
- 6x + 12.

 c¿s10d = 3s100d - 12s10d + 15 = 195.

 c¿sxd =

d
dx

 Ax3
- 6x2

+ 15x B = 3x2
- 12x + 15

c¿s10d :

rsxd = x3
- 3x2

+ 12x

csxd = x3
- 6x2

+ 15x

d

csxd = ax3
+ bx2

+ gx + d
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Sensitivity to Change

When a small change in x produces a large change in the value of a function ƒ(x), we say
that the function is relatively sensitive to changes in x. The derivative is a measure of
this sensitivity.

EXAMPLE 8 Genetic Data and Sensitivity to Change

The Austrian monk Gregor Johann Mendel (1822–1884), working with garden peas and
other plants, provided the first scientific explanation of hybridization.

His careful records showed that if p (a number between 0 and 1) is the frequency of the
gene for smooth skin in peas (dominant) and is the frequency of the gene for wrin-
kled skin in peas, then the proportion of smooth-skinned peas in the next generation will be

The graph of y versus p in Figure 3.20a suggests that the value of y is more sensitive to a
change in p when p is small than when p is large. Indeed, this fact is borne out by the de-
rivative graph in Figure 3.20b, which shows that is close to 2 when p is near 0 and
close to 0 when p is near 1.

dy>dp

y = 2ps1 - pd + p2
= 2p - p2 .

s1 - pd

ƒ¿sxd
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(a)

dy /dp
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2

(b)

 y � 2p � p2

� 2 � 2p
dy
dp

FIGURE 3.20 (a) The graph of 
describing the proportion of smooth-skinned peas.
(b) The graph of (Example 8).dy>dp

y = 2p - p2 ,

The implication for genetics is that introducing a few more dominant genes into a
highly recessive population (where the frequency of wrinkled skin peas is small) will have
a more dramatic effect on later generations than will a similar increase in a highly domi-
nant population.
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