EXERCISES 3.4

Derivatives

In Exercises 1–12, find dy/dx.

1.
$$y = -10x + 3\cos x$$
 2. $y = \frac{3}{x} + 5\sin x$

2.
$$y = \frac{3}{x} + 5 \sin x$$

3.
$$y = \csc x - 4\sqrt{x} + 7$$
 4. $y = x^2 \cot x - \frac{1}{x^2}$

4.
$$y = x^2 \cot x - \frac{1}{x^2}$$

5.
$$y = (\sec x + \tan x)(\sec x - \tan x)$$

6.
$$y = (\sin x + \cos x) \sec x$$

$$7. \ y = \frac{\cot x}{1 + \cot x}$$

8.
$$y = \frac{\cos x}{1 + \sin x}$$

9.
$$y = \frac{4}{\cos x} + \frac{1}{\tan x}$$

9.
$$y = \frac{4}{\cos x} + \frac{1}{\tan x}$$
 10. $y = \frac{\cos x}{x} + \frac{x}{\cos x}$

11.
$$y = x^2 \sin x + 2x \cos x - 2 \sin x$$

12.
$$y = x^2 \cos x - 2x \sin x - 2 \cos x$$

In Exercises 13–16, find ds/dt.

13.
$$s = \tan t - t$$

14.
$$s = t^2 - \sec t + 1$$

15.
$$s = \frac{1 + \csc t}{1 - \csc t}$$

16.
$$s = \frac{\sin t}{1 - \cos t}$$

In Exercises 17–20, find $dr/d\theta$.

$$17. r = 4 - \theta^2 \sin \theta$$

18.
$$r = \theta \sin \theta + \cos \theta$$

19.
$$r = \sec \theta \csc \theta$$

20.
$$r = (1 + \sec \theta) \sin \theta$$

In Exercises 21–24, find dp/dq.

21.
$$p = 5 + \frac{1}{\cot q}$$

22.
$$p = (1 + \csc q) \cos q$$

23.
$$p = \frac{\sin q + \cos q}{\cos q}$$
 24. $p = \frac{\tan q}{1 + \tan q}$

24.
$$p = \frac{\tan q}{1 + \tan q}$$

25. Find
$$y''$$
 if

$$\mathbf{a.} \ \ y = \csc x.$$

b.
$$y = \sec x$$
.

26. Find
$$y^{(4)} = d^4 y/dx^4$$
 if

a.
$$y = -2 \sin x$$
.

b.
$$y = 9 \cos x$$
.

Tangent Lines

In Exercises 27–30, graph the curves over the given intervals, together with their tangents at the given values of x. Label each curve and tangent with its equation.

27.
$$y = \sin x$$
, $-3\pi/2 \le x \le 2\pi$

$$x = -\pi, 0, 3\pi/2$$

28.
$$y = \tan x$$
, $-\pi/2 < x < \pi/2$

$$x = -\pi/3, 0, \pi/3$$

29.
$$y = \sec x$$
, $-\pi/2 < x < \pi/2$

$$x=-\pi/3,\,\pi/4$$

30.
$$y = 1 + \cos x$$
, $-3\pi/2 \le x \le 2\pi$

$$x = -\pi/3, 3\pi/2$$

To the graphs of the functions in Exercises 31–34 have any horizontal tangents in the interval $0 \le x \le 2\pi$? If so, where? If not, why not? Visualize your findings by graphing the functions with a grapher.

31.
$$y = x + \sin x$$

32.
$$y = 2x + \sin x$$

33.
$$y = x - \cot x$$

34.
$$y = x + 2\cos x$$

35. Find all points on the curve $y = \tan x$, $-\pi/2 < x < \pi/2$, where the tangent line is parallel to the line y = 2x. Sketch the curve and tangent(s) together, labeling each with its equation.

36. Find all points on the curve $y = \cot x$, $0 < x < \pi$, where the tangent line is parallel to the line y = -x. Sketch the curve and tangent(s) together, labeling each with its equation.

189

37.

38

Trigonometric Limits

Find the limits in Exercises 39-44.

$$39. \lim_{x \to 2} \sin \left(\frac{1}{x} - \frac{1}{2} \right)$$

40.
$$\lim_{x \to -\pi/6} \sqrt{1 + \cos(\pi \csc x)}$$

41.
$$\lim_{x \to 0} \sec \left[\cos x + \pi \tan \left(\frac{\pi}{4 \sec x} \right) - 1 \right]$$

42.
$$\lim_{x\to 0} \sin\left(\frac{\pi + \tan x}{\tan x - 2\sec x}\right)$$

43.
$$\lim_{t\to 0} \tan\left(1-\frac{\sin t}{t}\right)$$

44.
$$\lim_{\theta \to 0} \cos \left(\frac{\pi \theta}{\sin \theta} \right)$$

Simple Harmonic Motion

The equations in Exercises 45 and 46 give the position s = f(t) of a body moving on a coordinate line (s in meters, t in seconds). Find the body's velocity, speed, acceleration, and jerk at time $t = \pi/4$ sec.

45.
$$s = 2 - 2 \sin t$$

46.
$$s = \sin t + \cos t$$

Theory and Examples

47. Is there a value of *c* that will make

$$f(x) = \begin{cases} \frac{\sin^2 3x}{x^2}, & x \neq 0 \\ c, & x = 0 \end{cases}$$

continuous at x = 0? Give reasons for your answer.

48. Is there a value of b that will make

$$g(x) = \begin{cases} x + b, & x < 0 \\ \cos x, & x \ge 0 \end{cases}$$

continuous at x = 0? Differentiable at x = 0? Give reasons for your answers.

49. Find $d^{999}/dx^{999} (\cos x)$.

50. Derive the formula for the derivative with respect to x of

a. $\sec x$. **b.** $\csc x$. **c.** $\cot x$.

51. Graph $y = \cos x$ for $-\pi \le x \le 2\pi$. On the same screen, graph

$$y = \frac{\sin(x+h) - \sin x}{h}$$

for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try h = -1, -0.5, and -0.3. What happens as $h \rightarrow 0^+$? As $h \rightarrow 0^-$? What phenomenon is being illustrated here?

52. Graph $y = -\sin x$ for $-\pi \le x \le 2\pi$. On the same screen, graph

$$y = \frac{\cos(x+h) - \cos x}{h}$$

for h = 1, 0.5, 0.3, and 0.1. Then, in a new window, try h = -1, -0.5, and -0.3. What happens as $h \rightarrow 0^+$? As $h \rightarrow 0^-$? What phenomenon is being illustrated here?

53. Centered difference quotients The centered difference quotient

$$\frac{f(x+h) - f(x-h)}{2h}$$

is used to approximate f'(x) in numerical work because (1) its limit as $h \to 0$ equals f'(x) when f'(x) exists, and (2) it usually gives a better approximation of f'(x) for a given value of h than Fermat's difference quotient

$$\frac{f(x+h)-f(x)}{h}.$$

See the accompanying figure.

a. To see how rapidly the centered difference quotient for $f(x) = \sin x$ converges to $f'(x) = \cos x$, graph $y = \cos x$ together with

$$y = \frac{\sin(x+h) - \sin(x-h)}{2h}$$

over the interval $[-\pi, 2\pi]$ for h = 1, 0.5, and 0.3. Compare the results with those obtained in Exercise 51 for the same values of h.

b. To see how rapidly the centered difference quotient for $f(x) = \cos x$ converges to $f'(x) = -\sin x$, graph $y = -\sin x$ together with

$$y = \frac{\cos(x+h) - \cos(x-h)}{2h}$$

over the interval $[-\pi, 2\pi]$ for h = 1, 0.5, and 0.3. Compare the results with those obtained in Exercise 52 for the same values of h.

54. A caution about centered difference quotients (Continuation of Exercise 53.) The quotient

$$\frac{f(x+h) - f(x-h)}{2h}$$

may have a limit as $h \to 0$ when f has no derivative at x. As a case in point, take f(x) = |x| and calculate

$$\lim_{h \to 0} \frac{|0 + h| - |0 - h|}{2h}.$$

As you will see, the limit exists even though f(x) = |x| has no derivative at x = 0. *Moral:* Before using a centered difference quotient, be sure the derivative exists.

T 55. Slopes on the graph of the tangent function Graph $y = \tan x$ and its derivative together on $(-\pi/2, \pi/2)$. Does the graph of the tangent function appear to have a smallest slope? a largest slope? Is the slope ever negative? Give reasons for your answers.

- **T** 56. Slopes on the graph of the cotangent function Graph $y = \cot x$ and its derivative together for $0 < x < \pi$. Does the graph of the cotangent function appear to have a smallest slope? A largest slope? Is the slope ever positive? Give reasons for your answers.
- **T** 57. Exploring (sin kx)/x Graph $y = (\sin x)/x$, $y = (\sin 2x)/x$, and $y = (\sin 4x)/x$ together over the interval $-2 \le x \le 2$. Where does each graph appear to cross the y-axis? Do the graphs really intersect the axis? What would you expect the graphs of $y = (\sin 5x)/x$ and $y = (\sin (-3x))/x$ to do as $x \to 0$? Why? What about the graph of $y = (\sin kx)/x$ for other values of k? Give reasons for your answers.
- **58. Radians versus degrees: degree mode derivatives** What happens to the derivatives of sin *x* and cos *x* if *x* is measured in degrees instead of radians? To find out, take the following steps.
 - **a.** With your graphing calculator or computer grapher in *degree mode*, graph

$$f(h) = \frac{\sin h}{h}$$

and estimate $\lim_{h\to 0} f(h)$. Compare your estimate with $\pi/180$. Is there any reason to believe the limit *should* be $\pi/180$?

b. With your grapher still in degree mode, estimate

$$\lim_{h\to 0}\frac{\cos h-1}{h}.$$

- **c.** Now go back to the derivation of the formula for the derivative of sin *x* in the text and carry out the steps of the derivation using degree-mode limits. What formula do you obtain for the derivative?
- **d.** Work through the derivation of the formula for the derivative of cos *x* using degree-mode limits. What formula do you obtain for the derivative?
- e. The disadvantages of the degree-mode formulas become apparent as you start taking derivatives of higher order. Try it. What are the second and third degree-mode derivatives of sin x and cos x?