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EXERCISES 3.5

Derivative Calculations
In Exercises 1–8, given and find 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–18, write the function in the form and
Then find as a function of x.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Find the derivatives of the functions in Exercises 19–38.

19. 20.

21. s =

4
3p

 sin 3t +

4
5p

 cos 5t

q = 22r - r2p = 23 - t

y = 5 cos-4 xy = sin3 x

y = cot ap -

1
x by = sec stan xd

y = ax
5

+

1
5x
b5

y = ax2

8
+ x -

1
x b

4

y = ax
2

- 1b-10

y = a1 -

x
7
b-7

y = s4 - 3xd9y = s2x + 1d5

dy>dxu = gsxd .
y = ƒsud

y = -sec u, u = x2
+ 7xy = tan u, u = 10x - 5

y = sin u, u = x - cos xy = cos u, u = sin x

y = cos u, u = -x>3y = sin u, u = 3x + 1

y = 2u3, u = 8x - 1y = 6u - 9, u = s1>2dx4

ƒ¿sgsxddg¿sxd .
dy>dx =u = gsxd ,y = ƒsud

22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39–48, find .

39. 40.

41. 42. y = s1 + cot st>2dd-2y = s1 + cos 2td-4

y = sec2 pty = sin2 spt - 2d
dy>dt

q = cot asin t
t bq = sin a t2t + 1

b
r = sec2u tan a1

u
br = sin su2d cos s2ud

g std = a1 + cos t
sin t

b-1

ƒsud = a sin u

1 + cos u
b2

k sxd = x2 sec a1x bhsxd = x tan A21x B + 7

y = s2x - 5d-1sx2
- 5xd6y = s4x + 3d4sx + 1d-3

y = s5 - 2xd-3
+

1
8

 a2x + 1b4

y =

1
21

 s3x - 2d7
+ a4 -

1
2x2 b

-1

y =

1
x  sin-5 x -

x
3

 cos3 xy = x2 sin4 x + x cos-2 x

r = -ssec u + tan ud-1r = scsc u + cot ud-1

s = sin a3pt
2
b + cos a3pt

2
b
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43. 44.

45. 46.

47. 48.

Second Derivatives
Find in Exercises 49–52.

49. 50.

51. 52.

Finding Numerical Values of Derivatives
In Exercises 53–58, find the value of at the given value of x.

53.

54.

55.

56.

57.

58.

59. Suppose that functions ƒ and g and their derivatives with respect
to x have the following values at and 

x ƒ(x) g (x) ƒ �(x) g�(x)

2 8 2
3 3 5

Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. b.

c. d.

e. f.

g. h.

60. Suppose that the functions ƒ and g and their derivatives with re-
spect to x have the following values at and 

x ƒ(x) g (x) ƒ �(x) g�(x)

0 1 1 5
1 3 -8>3-1>3-4

1>3

x = 1.x = 0

2f 2sxd + g2sxd, x = 21>g2sxd, x = 3

2ƒsxd, x = 2ƒsg sxdd, x = 2

ƒsxd>g sxd, x = 2ƒsxd # g sxd, x = 3

ƒsxd + g sxd, x = 32ƒsxd, x = 2

2p-4
-31>3

x = 3.x = 2

ƒsud = au - 1
u + 1

b2

, u = g sxd =

1
x2 - 1, x = -1

ƒsud =

2u

u2
+ 1

 , u = g sxd = 10x2
+ x + 1, x = 0

ƒsud = u +

1
cos2 u

 , u = g sxd = px, x = 1>4
ƒsud = cot 

pu
10

 , u = g sxd = 51x, x = 1

ƒsud = 1 -

1
u , u = g sxd =

1
1 - x

 , x = -1

ƒsud = u5
+ 1, u = g sxd = 1x, x = 1

sƒ � gd¿

y = 9 tan ax
3
by =

1
9

 cot s3x - 1d

y = A1 - 1x B-1y = a1 +

1
x b

3

y–

y = 4 sin A21 + 1t By = 21 + cos st2d

y =

1
6

 A1 + cos2 A7t B B3y = a1 + tan4 a t
12
b b3

y = cos a5 sin a t
3
b by = sin scos s2t - 5dd

Find the derivatives with respect to x of the following combina-
tions at the given value of x,

a. b.

c. d.

e. f.

g.

61. Find when if and 

62. Find when if and 

Choices in Composition
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule says
you should. Try it with the functions in Exercises 63 and 64.

63. Find if by using the Chain Rule with y as a compos-
ite of

a.

b.

64. Find if by using the Chain Rule with y as a com-
posite of

a.

b.

Tangents and Slopes
65. a. Find the tangent to the curve 

b. Slopes on a tangent curve What is the smallest value the
slope of the curve can ever have on the interval

Give reasons for your answer.

66. Slopes on sine curves

a. Find equations for the tangents to the curves and
at the origin. Is there anything special about

how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves
and at the origin

Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the
curves and can ever have? Give
reasons for your answer.

d. The function completes one period on the interval
the function completes two periods, the

function completes half a period, and so on. Is
there any relation between the number of periods 
completes on and the slope of the curve at
the origin? Give reasons for your answer.

Finding Cartesian Equations from
Parametric Equations
Exercises 67–78 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by

y = sin mx[0, 2p]
y = sin mx

y = sin sx>2d
y = sin 2x[0, 2p] ,

y = sin x

y = -sin sx>mdy = sin mx

sm a constant Z 0d?
y = -sin sx>mdy = sin mx

y = -sin sx>2d
y = sin 2x

-2 6 x 6 2?

y = 2 tan spx>4d at x = 1.

y = 1u and u = x3 .

y = u3 and u = 1x

y = x3>2dy>dx

y = 1 + s1>ud and u = 1>sx - 1d .

y = su>5d + 7 and u = 5x - 35

y = xdy>dx

dx>dt = 1>3.y = x2
+ 7x - 5x = 1dy>dt

du>dt = 5.s = cos uu = 3p>2ds>dt

ƒsx + g sxdd, x = 0

sx11
+ ƒsxdd-2, x = 1g sƒsxdd, x = 0

ƒsg sxdd, x = 0
ƒsxd

g sxd + 1
 , x = 1

ƒsxdg3sxd, x = 05ƒsxd - g sxd, x = 1
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finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Determining Parametric Equations
79. Find parametric equations and a parameter interval for the motion

of a particle that starts at (a, 0) and traces the circle 

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(There are many ways to do these, so your answers may not be the
same as the ones in the back of the book.)

80. Find parametric equations and a parameter interval for the motion
of a particle that starts at (a, 0) and traces the ellipse

a. once clockwise. b. once counterclockwise.

c. twice clockwise. d. twice counterclockwise.

(As in Exercise 79, there are many correct answers.)

In Exercises 81–86, find a parametrization for the curve.

81. the line segment with endpoints and (4, 1)

82. the line segment with endpoints and 

83. the lower half of the parabola 

84. the left half of the parabola 

85. the ray (half line) with initial point (2, 3) that passes through the
point 

86. the ray (half line) with initial point that passes through
the point (0, 0)

Tangents to Parametrized Curves
In Exercises 87–94, find an equation for the line tangent to the curve
at the point defined by the given value of t. Also, find the value of

at this point.

87.

88.

89. x = t, y = 1t, t = 1>4
x = cos t, y = 23 cos t, t = 2p>3
x = 2 cos t, y = 2 sin t, t = p>4

d2y>dx2

s -1, 2d
s -1, -1d

y = x2
+ 2x

x - 1 = y2

s3, -2ds -1, 3d
s -1, -3d

sx2>a2d + sy2>b2d = 1

x2
+ y2

= a2

x = -sec t, y = tan t, -p>2 6 t 6 p>2
x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
x = 2t + 1, y = 1t, t Ú 0

x = t, y = 21 - t2, -1 … t … 0

x = 3 - 3t, y = 2t, 0 … t … 1

x = 2t - 5, y = 4t - 7, - q 6 t 6 q

x = -1t, y = t, t Ú 0

x = 3t, y = 9t2, - q 6 t 6 q

x = 4 sin t, y = 5 cos t, 0 … t … 2p

x = 4 cos t, y = 2 sin t, 0 … t … 2p

x = cos sp - td, y = sin sp - td, 0 … t … p

x = cos 2t, y = sin 2t, 0 … t … p

90.

91.

92.

93.

94.

Theory, Examples, and Applications
95. Running machinery too fast Suppose that a piston is moving

straight up and down and that its position at time t sec is

with A and b positive. The value of A is the amplitude of the mo-
tion, and b is the frequency (number of times the piston moves up
and down each second). What effect does doubling the frequency
have on the piston’s velocity, acceleration, and jerk? (Once you find
out, you will know why machinery breaks when you run it too fast.)

96. Temperatures in Fairbanks, Alaska The graph in Figure 3.33
shows the average Fahrenheit temperature in Fairbanks, Alaska,
during a typical 365-day year. The equation that approximates the
temperature on day x is

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature
increasing when it is increasing at its fastest?

y = 37 sin c 2p
365

 sx - 101d d + 25.

s = A cos s2pbtd ,

x = sec2 t - 1, y = tan t, t = -p>4
x = cos t, y = 1 + sin t, t = p>2
x = t - sin t, y = 1 - cos t, t = p>3
x = 2t2

+ 3, y = t4, t = -1

x = -2t + 1, y = 23t, t = 3
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FIGURE 3.33 Normal mean air temperatures at Fairbanks,
Alaska, plotted as data points, and the approximating sine
function (Exercise 96).

97. Particle motion The position of a particle moving along a co-

ordinate line is with s in meters and t in seconds.
Find the particle’s velocity and acceleration at 

98. Constant acceleration Suppose that the velocity of a falling
body is (k a constant) at the instant the body has
fallen s m from its starting point. Show that the body’s accelera-
tion is constant.

y = k1s m>sec

t = 6 sec.
s = 21 + 4t ,
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99. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to when it is s
km from Earth’s center. Show that the meteorite’s acceleration is
inversely proportional to 

100. Particle acceleration A particle moves along the x-axis with
velocity Show that the particle’s acceleration is

101. Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

where g is the constant acceleration of gravity at the pendulum’s lo-
cation. If we measure g in centimeters per second squared, we meas-
ure L in centimeters and T in seconds. If the pendulum is made of
metal, its length will vary with temperature, either increasing or de-
creasing at a rate that is roughly proportional to L. In symbols, with
u being temperature and k the proportionality constant,

Assuming this to be the case, show that the rate at which the pe-
riod changes with respect to temperature is .

102. Chain Rule Suppose that and Then the
composites

are both differentiable at even though g itself is not differ-
entiable at Does this contradict the Chain Rule? Explain.

103. Tangents Suppose that is differentiable at and
that is differentiable at If the graph of

has a horizontal tangent at can we conclude
anything about the tangent to the graph of or the tan-
gent to the graph of Give reasons for your answer.

104. Suppose that is differentiable at is
differentiable at and is negative.
What, if anything, can be said about the values of and

105. The derivative of sin 2x Graph the function for
Then, on the same screen, graph

for and 0.2. Experiment with other values of h, in-
cluding negative values. What do you see happening as 
Explain this behavior.

106. The derivative of Graph for
Then, on the same screen, graph

y =

cos ssx + hd2d - cos sx2d
h

-2 … x … 3.
y = -2x sin sx2dcos sx2d

h : 0?
h = 1.0, 0.5 ,

y =

sin 2sx + hd - sin 2x

h

-2 … x … 3.5 .
y = 2 cos 2x

ƒ¿sg s -5dd?
g¿s -5d

sƒ � gd¿s -5du = g s -5d ,
x = -5, y = ƒsudu = g sxd

f at u = g s1d?
g at x = 1

x = 1,y = ƒsg sxdd
u = g s1d .y = ƒsud

x = 1u = g sxd
x = 0.

x = 0

sƒ � gdsxd = ƒ x ƒ
2

= x2 and sg � ƒdsxd = ƒ x2
ƒ = x2

g sxd = ƒ x ƒ .ƒsxd = x2

kT>2

dL
du

= kL .

T = 2pAL
g  ,

ƒsxdƒ¿sxd .
dx>dt = ƒsxd .

s2 .

1s
for Experiment with other values of h.
What do you see happening as Explain this behavior.

The curves in Exercises 107 and 108 are called Bowditch curves or
Lissajous figures. In each case, find the point in the interior of the first
quadrant where the tangent to the curve is horizontal, and find the
equations of the two tangents at the origin.

107. 108.

Using the Chain Rule, show that the power rule 
holds for the functions in Exercises 109 and 110.

109. 110.

COMPUTER EXPLORATIONS

Trigonometric Polynomials
111. As Figure 3.34 shows, the trigonometric “polynomial”

gives a good approximation of the sawtooth function 
on the interval How well does the derivative of ƒ ap-
proximate the derivative of g at the points where is de-
fined? To find out, carry out the following steps.

a. Graph (where defined) over 

b. Find .

c. Graph . Where does the approximation of by
seem to be best? Least good? Approximations by

trigonometric polynomials are important in the theories of
heat and oscillation, but we must not expect too much of
them, as we see in the next exercise.

dƒ>dt
dg>dtdƒ>dt

dƒ>dt

[-p, p] .dg>dt

dg>dt
[-p, p] .

s = g std

 -0.02546 cos 10t - 0.01299 cos 14t

 s = ƒstd = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

x3>4
= 2x1xx1>4

= 21x

xn
sd>dxdxn

= nxn - 1

h : 0?
h = 1.0, 0.7, and 0.3 .
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T

T

x

y

1–1

x � sin t
y � sin 2t

x

y

1–1

1

–1

x � sin 2t
y � sin 3t

T

t

s

0–� �

2
�

s � g(t)

s � f (t)

FIGURE 3.34 The approximation of a
sawtooth function by a trigonometric
“polynomial” (Exercise 111).
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112. (Continuation of Exercise 111.) In Exercise 111, the trigonomet-
ric polynomial that approximated the sawtooth function g (t)
on had a derivative that approximated the derivative of
the sawtooth function. It is possible, however, for a trigonometric
polynomial to approximate a function in a reasonable way with-
out its derivative approximating the function’s derivative at all
well. As a case in point, the “polynomial”

graphed in Figure 3.35 approximates the step function 
shown there. Yet the derivative of h is nothing like the derivative
of k.

s = kstd

 + 0.18189 sin 14t + 0.14147 sin 18t

 s = hstd = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

[-p, p]
ƒ(t)

a. Graph (where defined) over 

b. Find 

c. Graph to see how badly the graph fits the graph of
. Comment on what you see.

Parametrized Curves
Use a CAS to perform the following steps on the parametrized curves
in Exercises 113–116.

a. Plot the curve for the given interval of t values.

b. Find and at the point 

c. Find an equation for the tangent line to the curve at the point
defined by the given value Plot the curve together with
the tangent line on a single graph.

113.

114.

115.

116. x = et cos t, y = et sin t, 0 … t … p, t0 = p>2
x = t - cos t, y = 1 + sin t, -p … t … p, t0 = p>4
t0 = 3>2
x = 2t3

- 16t2
+ 25t + 5, y = t2

+ t - 3, 0 … t … 6,

x =

1
3

 t3, y =

1
2

 t2, 0 … t … 1, t0 = 1>2

t0 .

t0 .d2y>dx2dy>dx

dk>dt
dh>dt

dh>dt.

[-p, p] .dk>dt

205

1

t

s

0 �
2

�–� �
2

–

–1

s � k(t)

s � h(t)

FIGURE 3.35 The approximation of a
step function by a trigonometric
“polynomial” (Exercise 112).
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