
OVERVIEW This chapter studies some of the important applications of derivatives. We
learn how derivatives are used to find extreme values of functions, to determine and ana-
lyze the shapes of graphs, to calculate limits of fractions whose numerators and denomina-
tors both approach zero or infinity, and to find numerically where a function equals zero.
We also consider the process of recovering a function from its derivative. The key to many
of these accomplishments is the Mean Value Theorem, a theorem whose corollaries pro-
vide the gateway to integral calculus in Chapter 5.
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Extreme Values of Functions

This section shows how to locate and identify extreme values of a continuous function
from its derivative. Once we can do this, we can solve a variety of optimization problems
in which we find the optimal (best) way to do something in a given situation.

4.1

DEFINITIONS Absolute Maximum, Absolute Minimum
Let ƒ be a function with domain D. Then ƒ has an absolute maximum value on
D at a point c if

and an absolute minimum value on D at c if

ƒsxd Ú ƒscd for all x in D .

ƒsxd … ƒscd for all x in D

Absolute maximum and minimum values are called absolute extrema (plural of the Latin
extremum). Absolute extrema are also called global extrema, to distinguish them from
local extrema defined below.

For example, on the closed interval the function takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function takes on a maximum value of 1 and a mini-
mum value of (Figure 4.1).

Functions with the same defining rule can have different extrema, depending on the
domain.

-1
g sxd = sin x

ƒsxd = cos x[-p>2, p>2]

x

y

0

1
y � sin x

y � cos x
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�
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–�
2

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on

These values can depend
on the domain of a function.
[-p>2, p>2] .
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4.1 Extreme Values of Functions 245

EXAMPLE 1 Exploring Absolute Extrema

The absolute extrema of the following functions on their domains can be seen in Figure 4.2.

x
2

(a) abs min only

 y � x2

D � (–�, �)

y

x
2

(b) abs max and min

 y � x2

D � [0, 2]

y

x
2

(d) no max or min

 y � x2

D � (0, 2)

y

x
2

(c) abs max only

 y � x2

D � (0, 2]

y

FIGURE 4.2 Graphs for Example 1.

Function rule Domain D Absolute extrema on D

(a) No absolute maximum.
Absolute minimum of 0 at 

(b) [0, 2] Absolute maximum of 4 at 
Absolute minimum of 0 at 

(c) (0, 2] Absolute maximum of 4 at 
No absolute minimum.

(d) (0, 2) No absolute extrema.y = x2

x = 2.y = x2

x = 0.
x = 2.y = x2

x = 0.
s - q , q dy = x2

HISTORICAL BIOGRAPHY

Daniel Bernoulli
(1700–1789)

The following theorem asserts that a function which is continuous at every point of a
closed interval [a, b] has an absolute maximum and an absolute minimum value on the in-
terval. We always look for these values when we graph a function.
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The proof of The Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 4) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a, b].
As we observed for the function it is possible that an absolute minimum (or ab-
solute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem
need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. Figure 4.4 shows that the continuity requirement can-
not be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its domain
[a, b]. The function’s absolute minimum occurs at a even though at e the function’s value is

y = cos x ,
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x
a x2

x2

Maximum and minimum
at interior points

b

M

x
a b

M

m

Maximum and minimum
at endpoints

x
a

Maximum at interior point,
minimum at endpoint

M

b

m
x

a

Minimum at interior point,
maximum at endpoint

M

b

m

(x2, M)

(x1, m)

x1

y � f (x)

y � f (x)

y � f (x)

y � f (x)

x1

�m�

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].

THEOREM 1 The Extreme Value Theorem
If ƒ is continuous on a closed interval [a, b], then ƒ attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers and in [a, b] with and for
every other x in [a, b] (Figure 4.3).

m … ƒsxd … Mƒsx1d = m, ƒsx2d = M ,x2x1

x

y

1
Smallest value

0

No largest value

1

y � x
0 � x � 1

FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum
value on a closed interval. The function

is continuous at every point of [0, 1]
except yet its graph over [0, 1]
does not have a highest point.

x = 1,

y = e x, 0 … x 6 1

0, x = 1
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4.1 Extreme Values of Functions 247

smaller than at any other point nearby. The curve rises to the left and falls to the right
around c, making ƒ(c) a maximum locally. The function attains its absolute maximum at d.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y � f (x)

FIGURE 4.5 How to classify maxima and minima.

DEFINITIONS Local Maximum, Local Minimum
A function ƒ has a local maximum value at an interior point c of its domain if

A function ƒ has a local minimum value at an interior point c of its domain if

ƒsxd Ú ƒscd for all x in some open interval containing c .

ƒsxd … ƒscd for all x in some open interval containing c .

THEOREM 2 The First Derivative Theorem for Local Extreme Values
If ƒ has a local maximum or minimum value at an interior point c of its domain,
and if is defined at c, then

ƒ¿scd = 0.

ƒ¿

We can extend the definitions of local extrema to the endpoints of intervals by defining ƒ
to have a local maximum or local minimum value at an endpoint c if the appropriate in-
equality holds for all x in some half-open interval in its domain containing c. In Figure 4.5,
the function ƒ has local maxima at c and d and local minima at a, e, and b. Local extrema
are also called relative extrema.

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.
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Proof To prove that is zero at a local extremum, we show first that cannot be
positive and second that cannot be negative. The only number that is neither positive
nor negative is zero, so that is what must be.

To begin, suppose that ƒ has a local maximum value at (Figure 4.6) so that
for all values of x near enough to c. Since c is an interior point of ƒ’s do-

main, is defined by the two-sided limit

This means that the right-hand and left-hand limits both exist at and equal 
When we examine these limits separately, we find that

(1)

Similarly,

(2)

Together, Equations (1) and (2) imply 
This proves the theorem for local maximum values. To prove it for local mini-

mum values, we simply use which reverses the inequalities in Equations (1)
and (2).

Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. Hence the only
places where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where 

2. interior points where is undefined,

3. endpoints of the domain of ƒ.

The following definition helps us to summarize.

ƒ¿

ƒ¿ = 0,

ƒsxd Ú ƒscd ,

ƒ¿scd = 0.

ƒ¿scd = lim
x:c-

 
ƒsxd - ƒscd

x - c Ú 0.

ƒ¿scd = lim
x:c+

 
ƒsxd - ƒscd

x - c … 0.

ƒ¿scd .x = c

lim
x:c

 
ƒsxd - ƒscd

x - c .

ƒ¿scd
ƒsxd - ƒscd … 0

x = c
ƒ¿scd

ƒ¿scd
ƒ¿scdƒ¿scd
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Because 
and  ƒsxd … ƒscd

sx - cd 7 0

Because 
and  ƒsxd … ƒscd

sx - cd 6 0

x
c x

Local maximum value

x

Secant slopes � 0
(never negative)

Secant slopes � 0
(never positive)

y � f (x)

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.

DEFINITION Critical Point
An interior point of the domain of a function ƒ where is zero or undefined is a
critical point of ƒ.

ƒ¿

Thus the only domain points where a function can assume extreme values are critical
points and endpoints.

Be careful not to misinterpret Theorem 2 because its converse is false. A differen-
tiable function may have a critical point at without having a local extreme value
there. For instance, the function has a critical point at the origin and zero value
there, but is positive to the right of the origin and negative to the left. So it cannot have a
local extreme value at the origin. Instead, it has a point of inflection there. This idea is de-
fined and discussed further in Section 4.4.

Most quests for extreme values call for finding the absolute extrema of a continuous
function on a closed and finite interval. Theorem 1 assures us that such values exist; Theo-
rem 2 tells us that they are taken on only at critical points and endpoints. Often we can

ƒsxd = x3
x = c
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4.1 Extreme Values of Functions 249

simply list these points and calculate the corresponding function values to find what the
largest and smallest values are, and where they are located.

How to Find the Absolute Extrema of a Continuous Function ƒ on a
Finite Closed Interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

EXAMPLE 2 Finding Absolute Extrema

Find the absolute maximum and minimum values of on 

Solution The function is differentiable over its entire domain, so the only critical point is
where namely We need to check the function’s values at 
and at the endpoints and 

Critical point value:

Endpoint values:

The function has an absolute maximum value of 4 at and an absolute minimum
value of 0 at 

EXAMPLE 3 Absolute Extrema at Endpoints

Find the absolute extrema values of on 

Solution The function is differentiable on its entire domain, so the only critical points
occur where Solving this equation gives

a point not in the given domain. The function’s absolute extrema therefore occur at the
endpoints, (absolute minimum), and (absolute maximum). See
Figure 4.7.

EXAMPLE 4 Finding Absolute Extrema on a Closed Interval

Find the absolute maximum and minimum values of on the interval 

Solution We evaluate the function at the critical points and endpoints and take the
largest and smallest of the resulting values.

The first derivative

has no zeros but is undefined at the interior point The values of ƒ at this one criti-
cal point and at the endpoints are

Critical point value:

Endpoint values:

ƒs3d = s3d2>3
= 23 9 .

ƒs -2d = s -2d2>3
= 23 4

ƒs0d = 0

x = 0.

ƒ¿sxd =
2
3

 x-1>3
=

2

323 x

[-2, 3] .ƒsxd = x2>3

g s1d = 7g s -2d = -32

8 - 4t3
= 0 or t = 23 2 7 1,

g¿std = 0.

[-2, 1] .g std = 8t - t4

x = 0.
x = -2

ƒs1d = 1

ƒs -2d = 4

ƒs0d = 0

x = 1:x = -2
x = 0x = 0.ƒ¿sxd = 2x = 0,

[-2, 1] .ƒsxd = x2

(–2, –32)

(1, 7)

y � 8t � t4

–32

7

1–1–2
t

y

FIGURE 4.7 The extreme values of
on (Example 3).[-2, 1]g std = 8t - t4
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We can see from this list that the function’s absolute maximum value is and it
occurs at the right endpoint The absolute minimum value is 0, and it occurs at the
interior point (Figure 4.8).

While a function’s extrema can occur only at critical points and endpoints, not every
critical point or endpoint signals the presence of an extreme value. Figure 4.9 illustrates
this for interior points.

We complete this section with an example illustrating how the concepts we studied
are used to solve a real-world optimization problem.

EXAMPLE 5 Piping Oil from a Drilling Rig to a Refinery

A drilling rig 12 mi offshore is to be connected by pipe to a refinery onshore, 20 mi
straight down the coast from the rig. If underwater pipe costs $500,000 per mile and land-
based pipe costs $300,000 per mile, what combination of the two will give the least expen-
sive connection?

Solution We try a few possibilities to get a feel for the problem:

(a) Smallest amount of underwater pipe

Underwater pipe is more expensive, so we use as little as we can. We run straight to
shore (12 mi) and use land pipe for 20 mi to the refinery.

(b) All pipe underwater (most direct route)

We go straight to the refinery underwater.

This is less expensive than plan (a).

 L 11,661,900

 Dollar cost = 2544 s500,000d

20

12

Rig

Refinery

�144 + 400

 = 12,000,000

 Dollar cost = 12s500,000d + 20s300,000d

20

12

Rig

Refinery

x = 0.
x = 3.

23 9 L 2.08,

250 Chapter 4: Applications of Derivatives

x

y

10 2 3–1–2

1

2

Absolute maximum;
also a local maximumLocal

maximum

Absolute minimum;
also a local minimum

y � x2/3,  –2 ≤ x ≤ 3

FIGURE 4.8 The extreme values of
on occur at and

(Example 4).x = 3
x = 0[-2, 3]ƒsxd = x2>3

–1

x

y

1–1

1

0

(a)

y � x3

–1

x

y

1–1

1

0

(b)

y � x1/3

FIGURE 4.9 Critical points without
extreme values. (a) is 0 at

but has no extremum there.
(b) is undefined at 
but has no extremum there.y = x1>3

x = 0,y¿ = s1>3dx-2>3
y = x3x = 0,

y¿ = 3x2
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4.1 Extreme Values of Functions 251

(c) Something in between

Now we introduce the length x of underwater pipe and the length y of land-based pipe
as variables. The right angle opposite the rig is the key to expressing the relationship be-
tween x and y, for the Pythagorean theorem gives

(3)

Only the positive root has meaning in this model.
The dollar cost of the pipeline is

To express c as a function of a single variable, we can substitute for x, using Equation (3):

Our goal now is to find the minimum value of c(y) on the interval The
first derivative of c(y) with respect to y according to the Chain Rule is

Setting equal to zero gives

 y = 11 or y = 29.

 y = 20 ; 9

 s20 - yd = ;

3
4

# 12 = ;9

 
16
9

 A20 - y B2 = 144

 
25
9

 A20 - y B2 = 144 + s20 - yd2

 
5
3

 A20 - y B = 2144 + s20 - yd2

 500,000 s20 - yd = 300,0002144 + s20 - yd2

c¿

 = -500,000 
20 - y2144 + s20 - yd2

+ 300,000.

 c¿s yd = 500,000 # 1
2

#
2s20 - yds -1d2144 + s20 - yd2

+ 300,000

0 … y … 20.

cs yd = 500,0002144 + s20 - yd2
+ 300,000y .

c = 500,000x + 300,000y .

 x = 2144 + s20 - yd2 .

 x2
= 122

+ s20 - yd2

12 mi

Rig

Refinery

20 – y y

20 mi

x
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252 Chapter 4: Applications of Derivatives

Only lies in the interval of interest. The values of c at this one critical point and at
the endpoints are

The least expensive connection costs $10,800,000, and we achieve it by running the line
underwater to the point on shore 11 mi from the refinery.

 cs20d = 12,000,000

 cs0d = 11,661,900

 cs11d = 10,800,000

y = 11
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