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The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a complicated
function, with many terms, the derivatives of which all cancel to give zero? What is the re-
lationship between two functions that have identical derivatives over an interval? What we
are really asking here is what functions can have a particular kind of derivative. These and
many other questions we study in this chapter are answered by applying the Mean Value
Theorem. To arrive at this theorem we first need Rolle’s Theorem.

Rolle’s Theorem

Drawing the graph of a function gives strong geometric evidence that between any two points
where a differentiable function crosses a horizontal line there is at least one point on the curve
where the tangent is horizontal (Figure 4.10). More precisely, we have the following theorem.

4.2

THEOREM 3 Rolle’s Theorem
Suppose that is continuous at every point of the closed interval [a, b]
and differentiable at every point of its interior (a, b). If

then there is at least one number c in (a, b) at which

ƒ¿scd = 0.

ƒsad = ƒsbd ,

y = ƒsxd

Proof Being continuous, ƒ assumes absolute maximum and minimum values on [a, b].
These can occur only

f '(c3) � 0

f '(c2) � 0
f '(c1) � 0

f '(c) � 0

y � f (x)

y � f (x)

0 a c b

0 bc3c2c1a

(a)

(b)

x

x

y

y

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).
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256 Chapter 4: Applications of Derivatives

1. at interior points where is zero,

2. at interior points where does not exist,

3. at the endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then
by Theorem 2 in Section 4.1, and we have found a point for Rolle’s theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then
because it must be the case that ƒ is a constant function with

for every Therefore and the point c can be taken
anywhere in the interior (a, b).

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

ƒ¿sxd = 0x H [a, b] .ƒsxd = ƒsad = ƒsbd
ƒsad = ƒsbd

ƒ¿scd = 0

ƒ¿ = 0

ƒ¿

ƒ¿

a bx0a bx0a

(a) Discontinuous at an 
endpoint of [a, b]

(b) Discontinuous at an 
interior point of [a, b]

(c) Continuous on [a, b] but not
differentiable at an interior
point

b
x x x

y y y

y � f (x) y � f (x) y � f (x)

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

HISTORICAL BIOGRAPHY

Michel Rolle
(1652–1719)

EXAMPLE 1 Horizontal Tangents of a Cubic Polynomial

The polynomial function

graphed in Figure 4.12 is continuous at every point of and is differentiable at every
point of Since Rolle’s Theorem says that must be zero at
least once in the open interval between and In fact, is 
zero twice in this interval, once at and again at 

EXAMPLE 2 Solution of an Equation 

Show that the equation

has exactly one real solution.

Solution Let

Then the derivative

ƒ¿sxd = 3x2
+ 3

y = ƒsxd = x3
+ 3x + 1.

x3
+ 3x + 1 = 0

ƒsxd = 0

x = 23.x = -23
ƒ¿sxd = x2

- 3b = 3.a = -3
ƒ¿ƒs -3d = ƒs3d = 0,s -3, 3d .

[-3, 3]

ƒsxd =

x3

3
- 3x

x

y

–3 30

(–�3, 2�3)

(�3, –2�3)

y �      � 3xx3

3

FIGURE 4.12 As predicted by Rolle’s
Theorem, this curve has horizontal
tangents between the points where it
crosses the x-axis (Example 1).
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is never zero (because it is always positive). Now, if there were even two points and
where ƒ(x) was zero, Rolle’s Theorem would guarantee the existence of a point
in between them where was zero. Therefore, ƒ has no more than one zero. It does

in fact have one zero, because the Intermediate Value Theorem tells us that the graph of
crosses the x-axis somewhere between (where ) and 

(where ). (See Figure 4.13.)

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.14). There is a point where the tangent is parallel to
chord AB.

y = 1
x = 0y = -3x = -1y = ƒsxd

ƒ¿x = c
x = b

x = a

x

y

0 1

(1, 5)

1

(–1, –3)

–1

y � x3 � 3x � 1

FIGURE 4.13 The only real zero of the
polynomial is the one
shown here where the curve crosses the
x-axis between and 0 (Example 2).-1

y = x3
+ 3x + 1

THEOREM 4 The Mean Value Theorem
Suppose is continuous on a closed interval [a, b] and differentiable on
the interval’s interior (a, b). Then there is at least one point c in (a, b) at which

(1)
ƒsbd - ƒsad

b - a
= ƒ¿scd .

y = ƒsxd

Proof We picture the graph of ƒ as a curve in the plane and draw a line through the points
A(a, ƒ(a)) and B(b, ƒ(b)) (see Figure 4.15). The line is the graph of the function

(2)

(point-slope equation). The vertical difference between the graphs of ƒ and g at x is

(3)

Figure 4.16 shows the graphs of ƒ, g, and h together.
The function h satisfies the hypotheses of Rolle’s Theorem on [a, b]. It is continuous

on [a, b] and differentiable on (a, b) because both ƒ and g are. Also, be-
cause the graphs of ƒ and g both pass through A and B. Therefore at some point

This is the point we want for Equation (1).
To verify Equation (1), we differentiate both sides of Equation (3) with respect to x

and then set 

Derivative of Eq. (3) p

p with 

Rearranged

which is what we set out to prove.

 ƒ¿scd =

ƒsbd - ƒsad
b - a

, 

h¿scd = 0 0 = ƒ¿scd -

ƒsbd - ƒsad
b - a

x = c h¿scd = ƒ¿scd -

ƒsbd - ƒsad
b - a

 h¿sxd = ƒ¿sxd -

ƒsbd - ƒsad
b - a

x = c :

c H sa, bd .
h¿scd = 0

hsad = hsbd = 0

 = ƒsxd - ƒsad -

ƒsbd - ƒsad
b - a

 sx - ad .

 hsxd = ƒsxd - g sxd

g sxd = ƒsad +

ƒsbd - ƒsad
b - a

 sx - ad

x

y

0 a

Tangent parallel to chord

c b

Slope

B

A

y � f (x)

Slope f '(c)

f (b) � f (a)
b � a

FIGURE 4.14 Geometrically, the Mean
Value Theorem says that somewhere
between A and B the curve has at least
one tangent parallel to chord AB.

A(a, f (a))

B(b, f (b))
y � f (x)

x
ba

FIGURE 4.15 The graph of ƒ and the
chord AB over the interval [a, b].
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The hypotheses of the Mean Value Theorem do not require ƒ to be differentiable at ei-
ther a or b. Continuity at a and b is enough (Figure 4.17).

EXAMPLE 3 The function (Figure 4.18) is continuous for and
differentiable for Since and the Mean Value Theorem
says that at some point c in the interval, the derivative must have the value

In this (exceptional) case we can identify c by solving the equation
to get  

A Physical Interpretation

If we think of the number as the average change in ƒ over [a, b] and
as an instantaneous change, then the Mean Value Theorem says that at some interior

point the instantaneous change must equal the average change over the entire interval.

EXAMPLE 4 If a car accelerating from zero takes 8 sec to go 352 ft, its average veloc-
ity for the 8-sec interval is At some point during the acceleration, the
Mean Value Theorem says, the speedometer must read exactly 30 mph  (Figure
4.19).

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over
an interval. The first corollary of the Mean Value Theorem provides the answer.

(44 ft>sec)
352>8 = 44 ft>sec.

ƒ¿scd
sƒsbd - ƒsadd>sb - ad

c = 1.2c = 2
s4 - 0d>s2 - 0d = 2.

ƒ¿sxd = 2x
ƒs2d = 4,ƒs0d = 00 6 x 6 2.

0 … x … 2ƒsxd = x2
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x
ba x

B

A

h(x) � f (x) � g(x)

y � f (x)

y � g(x)

h(x)

FIGURE 4.16 The chord AB is the graph
of the function g (x). The function 

gives the vertical distance
between the graphs of ƒ and g at x.
ƒsxd - g sxd

hsxd =

x

y

0 1–1

1
y � �1 � x2, –1 � x � 1

FIGURE 4.17 The function 
satisfies the hypotheses (and

conclusion) of the Mean Value Theorem
on even though ƒ is not
differentiable at and 1.-1

[-1, 1]

21 - x2
ƒsxd =

x

y

1

(1, 1)

2

B(2, 4)

y � x2

A(0, 0)

1

2

3

4

FIGURE 4.18 As we find in Example 3,
is where the tangent is parallel to

the chord.
c = 1

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s � f (t)

FIGURE 4.19 Distance versus elapsed
time for the car in Example 4.

COROLLARY 1 Functions with Zero Derivatives Are Constant
If at each point x of an open interval (a, b), then for all

where C is a constant.x H sa, bd ,
ƒsxd = Cƒ¿sxd = 0

HISTORICAL BIOGRAPHY

Joseph-Louis Lagrange
(1736–1813)
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Proof We want to show that ƒ has a constant value on the interval (a, b). We do so by
showing that if and are any two points in (a, b), then Numbering 
and from left to right, we have Then ƒ satisfies the hypotheses of the Mean
Value Theorem on It is differentiable at every point of and hence continu-
ous at every point as well. Therefore,

at some point c between and Since throughout (a, b), this equation translates
successively into

At the beginning of this section, we also asked about the relationship between two
functions that have identical derivatives over an interval. The next corollary tells us that
their values on the interval have a constant difference.

ƒsx2d - ƒsx1d
x2 - x1

= 0, ƒsx2d - ƒsx1d = 0, and ƒsx1d = ƒsx2d .

ƒ¿ = 0x2 .x1

ƒsx2d - ƒsx1d
x2 - x1

= ƒ¿scd

[x1, x2][x1 , x2] :
x1 6 x2 .x2

x1ƒsx1d = ƒsx2d .x2x1

COROLLARY 2 Functions with the Same Derivative Differ by a Constant
If at each point x in an open interval (a, b), then there exists a con-
stant C such that for all That is, is a constant
on (a, b).

ƒ - gx H sa, bd .ƒsxd = gsxd + C
ƒ¿sxd = g¿sxd

Proof At each point the derivative of the difference function is

Thus, on (a, b) by Corollary 1. That is, on (a, b), so 

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is, they re-
main true if the interval is 

Corollary 2 plays an important role when we discuss antiderivatives in Section 4.8. It
tells us, for instance, that since the derivative of any other
function with derivative 2x on must have the formula for some value of
C (Figure 4.20).

EXAMPLE 5 Find the function ƒ(x) whose derivative is sin x and whose graph passes
through the point (0, 2).

Solution Since ƒ(x) has the same derivative as we know that 
for some constant C. The value of C can be determined from the condition

that (the graph of ƒ passes through (0, 2)):

The function is 

Finding Velocity and Position from Acceleration

Here is how to find the velocity and displacement functions of a body falling freely from
rest with acceleration 9.8 m>sec2 .

ƒsxd = -cos x + 3.

ƒs0d = -cos s0d + C = 2, so C = 3.

ƒs0d = 2
-cos x + C

ƒsxd =g sxd = -cos x ,

x2
+ Cs - q , q d

ƒsxd = x2 on s - q , q d is 2x ,

sa, q d, s - q , bd, or s - q , q d .

gsxd + C .
ƒsxd =ƒsxd - gsxd = Chsxd = C

h¿sxd = ƒ¿sxd - g¿sxd = 0.

h = ƒ - gx H sa, bd

x

y

0

–1

–2

1

2

y � x2 � C C � 2

C � 1

C � 0

C � –1

C � –2

FIGURE 4.20 From a geometric point of
view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative 
2x are the parabolas shown
here for selected values of C.

y = x2
+ C ,

4100 AWL/Thomas_ch04p244-324  8/20/04  9:02 AM  Page 259

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce04.html?1_5_l
bounce04.html?5_1_qt


We know that y(t) is some function whose derivative is 9.8. We also know that the de-
rivative of is 9.8. By Corollary 2,

for some constant C. Since the body falls from rest, Thus

The velocity function must be How about the position function s(t)?
We know that s(t) is some function whose derivative is 9.8t. We also know that the de-

rivative of is 9.8t. By Corollary 2,

for some constant C. If the initial height is measured positive downward from
the rest position, then

The position function must be 
The ability to find functions from their rates of change is one of the very powerful

tools of calculus. As we will see, it lies at the heart of the mathematical developments in
Chapter 5.

sstd = 4.9t2
+ h .

4.9s0d2
+ C = h, and C = h .

ss0d = h ,

sstd = 4.9t2
+ C

ƒstd = 4.9t2

ystd = 9.8t .

9.8s0d + C = 0, and C = 0.

ys0d = 0.

ystd = 9.8t + C

g std = 9.8t

260 Chapter 4: Applications of Derivatives
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