EXERCISES 4.3

Analyzing f Given f'

Answer the following questions about the functions whose derivatives are given in Exercises 1–8:

- **a.** What are the critical points of *f*?
- **b.** On what intervals is *f* increasing or decreasing?
- **c.** At what points, if any, does *f* assume local maximum and minimum values?
- **1.** f'(x) = x(x 1) **2.** f'(x) = (x 1)(x + 2)
- **3.** $f'(x) = (x 1)^2(x + 2)$ **4.** $f'(x) = (x 1)^2(x + 2)^2$
- 5. f'(x) = (x 1)(x + 2)(x 3)
- 6. f'(x) = (x 7)(x + 1)(x + 5)
- **7.** $f'(x) = x^{-1/3}(x+2)$ **8.** $f'(x) = x^{-1/2}(x-3)$

Extremes of Given Functions

In Exercises 9–28:

- **a.** Find the intervals on which the function is increasing and decreasing.
- **b.** Then identify the function's local extreme values, if any, saying where they are taken on.
- c. Which, if any, of the extreme values are absolute?
- **d.** Support your findings with a graphing calculator or computer grapher.

9. $g(t) = -t^2 - 3t + 3$	10. $g(t) = -3t^2 + 9t + 5$
11. $h(x) = -x^3 + 2x^2$	12. $h(x) = 2x^3 - 18x$
13. $f(\theta) = 3\theta^2 - 4\theta^3$	14. $f(\theta) = 6\theta - \theta^3$
15. $f(r) = 3r^3 + 16r$	16. $h(r) = (r + 7)^3$

17. $f(x) = x^4 - 8x^2 + 16$	18. $g(x) = x^4 - 4x^3 + 4x^2$
19. $H(t) = \frac{3}{2}t^4 - t^6$	20. $K(t) = 15t^3 - t^5$
21. $g(x) = x\sqrt{8 - x^2}$	22. $g(x) = x^2 \sqrt{5 - x}$
23. $f(x) = \frac{x^2 - 3}{x - 2}, x \neq 2$	24. $f(x) = \frac{x^3}{3x^2 + 1}$
25. $f(x) = x^{1/3}(x + 8)$	26. $g(x) = x^{2/3}(x + 5)$
27. $h(x) = x^{1/3}(x^2 - 4)$	28. $k(x) = x^{2/3}(x^2 - 4)$

Extreme Values on Half-Open Intervals

In Exercises 29-36:

- **a.** Identify the function's local extreme values in the given domain, and say where they are assumed.
- **b.** Which of the extreme values, if any, are absolute?
- **c.** Support your findings with a graphing calculator or computer grapher.

29.
$$f(x) = 2x - x^2$$
, $-\infty < x \le 2$
30. $f(x) = (x + 1)^2$, $-\infty < x \le 0$
31. $g(x) = x^2 - 4x + 4$, $1 \le x < \infty$
32. $g(x) = -x^2 - 6x - 9$, $-4 \le x < \infty$
33. $f(t) = 12t - t^3$, $-3 \le t < \infty$
34. $f(t) = t^3 - 3t^2$, $-\infty < t \le 3$
35. $h(x) = \frac{x^3}{3} - 2x^2 + 4x$, $0 \le x < \infty$
36. $k(x) = x^3 + 3x^2 + 3x + 1$, $-\infty < x \le 0$

Graphing Calculator or Computer Grapher

In Exercises 37-40:

- **a.** Find the local extrema of each function on the given interval, and say where they are assumed.
- **T b.** Graph the function and its derivative together. Comment on the behavior of f in relation to the signs and values of f'.
 - **37.** $f(x) = \frac{x}{2} 2\sin\frac{x}{2}, \quad 0 \le x \le 2\pi$ **38.** $f(x) = -2\cos x - \cos^2 x, \quad -\pi \le x \le \pi$ **39.** $f(x) = \csc^2 x - 2\cot x, \quad 0 < x < \pi$ **40.** $f(x) = \sec^2 x - 2\tan x, \quad \frac{-\pi}{2} < x < \frac{\pi}{2}$

Theory and Examples

Show that the functions in Exercises 41 and 42 have local extreme values at the given values of θ , and say which kind of local extreme the function has.

- **41.** $h(\theta) = 3\cos\frac{\theta}{2}, \quad 0 \le \theta \le 2\pi, \text{ at } \theta = 0 \text{ and } \theta = 2\pi$
- **42.** $h(\theta) = 5\sin\frac{\theta}{2}, \quad 0 \le \theta \le \pi, \text{ at } \theta = 0 \text{ and } \theta = \pi$
- **43.** Sketch the graph of a differentiable function y = f(x) through the point (1, 1) if f'(1) = 0 and
 - **a.** f'(x) > 0 for x < 1 and f'(x) < 0 for x > 1;
 - **b.** f'(x) < 0 for x < 1 and f'(x) > 0 for x > 1;

- **c.** f'(x) > 0 for $x \neq 1$;
- **d.** f'(x) < 0 for $x \neq 1$.
- **44.** Sketch the graph of a differentiable function y = f(x) that has
 - **a.** a local minimum at (1, 1) and a local maximum at (3, 3);
 - **b.** a local maximum at (1, 1) and a local minimum at (3, 3);
 - **c.** local maxima at (1, 1) and (3, 3);
 - **d.** local minima at (1, 1) and (3, 3).
- **45.** Sketch the graph of a continuous function y = g(x) such that
 - **a.** g(2) = 2, 0 < g' < 1 for x < 2, $g'(x) \to 1^{-}$ as $x \to 2^{-}$, -1 < g' < 0 for x > 2, and $g'(x) \to -1^{+}$ as $x \to 2^{+}$;
 - **b.** g(2) = 2, g' < 0 for x < 2, $g'(x) \to -\infty$ as $x \to 2^-$, g' > 0 for x > 2, and $g'(x) \to \infty$ as $x \to 2^+$.
- **46.** Sketch the graph of a continuous function y = h(x) such that
 - **a.** $h(0) = 0, -2 \le h(x) \le 2$ for all $x, h'(x) \to \infty$ as $x \to 0^-$, and $h'(x) \to \infty$ as $x \to 0^+$;
 - **b.** $h(0) = 0, -2 \le h(x) \le 0$ for all $x, h'(x) \to \infty$ as $x \to 0^-$, and $h'(x) \to -\infty$ as $x \to 0^+$.
- **47.** As x moves from left to right through the point c = 2, is the graph of $f(x) = x^3 3x + 2$ rising, or is it falling? Give reasons for your answer.
- 48. Find the intervals on which the function f(x) = ax² + bx + c, a ≠ 0, is increasing and decreasing. Describe the reasoning behind your answer.