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Applied Optimization Problems

To optimize something means to maximize or minimize some aspect of it. What are the di-
mensions of a rectangle with fixed perimeter having maximum area? What is the least ex-
pensive shape for a cylindrical can? What is the size of the most profitable production
run? The differential calculus is a powerful tool for solving problems that call for maxi-
mizing or minimizing a function. In this section we solve a variety of optimization prob-
lems from business, mathematics, physics, and economics.

Examples from Business and Industry

EXAMPLE 1 Fabricating a Box

An open-top box is to be made by cutting small congruent squares from the corners of a
12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut
from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.32). In the figure, the corner squares are x in.
on a side. The volume of the box is a function of this variable:

Since the sides of the sheet of tin are only 12 in. long, and the domain of V is the in-
terval 

A graph of V (Figure 4.33) suggests a minimum value of 0 at and and a
maximum near To learn more, we examine the first derivative of V with respect to x:

Of the two zeros, and only lies in the interior of the function’s domain
and makes the critical-point list. The values of V at this one critical point and two end-
points are

The maximum volume is The cutout squares should be 2 in. on a side.

EXAMPLE 2 Designing an Efficient Cylindrical Can

You have been asked to design a 1-liter can shaped like a right circular cylinder (Figure
4.34). What dimensions will use the least material?

Solution Volume of can: If r and h are measured in centimeters, then the volume of the
can in cubic centimeters is

Surface area of can: A = 2pr2
+ 2prh

1 liter = 1000 cm3pr2h = 1000.

128 in.3 .

Endpoint values:  Vs0d = 0, Vs6d = 0.

 Critical-point value: Vs2d = 128

x = 2x = 6,x = 2

dV
dx

= 144 - 96x + 12x2
= 12s12 - 8x + x2d = 12s2 - xds6 - xd .

x = 2.
x = 6x = 0

0 … x … 6.
x … 6

V = hlwVsxd = xs12 - 2xd2
= 144x - 48x2

+ 4x3 .
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FIGURE 4.32 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?
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FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.
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4.5 Applied Optimization Problems 279

How can we interpret the phrase “least material”? First, it is customary to ignore the thickness
of the material and the waste in manufacturing.Then we ask for dimensions r and h that make
the total surface area as small as possible while satisfying the constraint 

To express the surface area as a function of one variable, we solve for one of the vari-
ables in and substitute that expression into the surface area formula. Solving
for h is easier:

Thus,

Our goal is to find a value of that minimizes the value of A. Figure 4.35 suggests
that such a value exists.

r 7 0

 = 2pr2
+

2000
r .

 = 2pr2
+ 2pr a1000

pr2 b
 A = 2pr2

+ 2prh

h =

1000
pr2 .

pr2h = 1000

pr2h = 1000.

h

22r

FIGURE 4.34 This 1-L can uses the least
material when (Example 2).h = 2r
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A � 2�r2 �           ,  r � 0

500
�

Tall and thin

Short and wide

FIGURE 4.35 The graph of is concave up.A = 2pr2
+ 2000>r

Notice from the graph that for small r (a tall thin container, like a piece of pipe), the
term dominates and A is large. For large r (a short wide container, like a pizza
pan), the term dominates and A again is large.

Since A is differentiable on an interval with no endpoints, it can have a mini-
mum value only where its first derivative is zero.

Set 

Multiply by 

Solve for r.

What happens at r = 23 500>p?

 r =
3 A500
p L 5.42

r2 . 4pr3
= 2000

dA>dr = 0 . 0 = 4pr -

2000
r2

 
dA
dr

= 4pr -

2000
r2

r 7 0,
2pr2

2000>r
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The second derivative

is positive throughout the domain of A. The graph is therefore everywhere concave up and
the value of A at an absolute minimum.

The corresponding value of h (after a little algebra) is

The 1-L can that uses the least material has height equal to the diameter, here with
and h L 10.84 cm.r L 5.42 cm

h =

1000
pr2 = 2 A3 500

p = 2r .

r = 23 500>p

d2A
dr2 = 4p +

4000
r3
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Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given?

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the un-
known as a function of a single variable or in two equations in two un-
knowns. This may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and sec-
ond derivatives to identify and classify the function’s critical points.

Examples from Mathematics and Physics

EXAMPLE 3 Inscribing Rectangles

A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rec-
tangle can have, and what are its dimensions?

Solution Let be the coordinates of the corner of the rectangle obtained by
placing the circle and rectangle in the coordinate plane (Figure 4.36). The length, height,
and area of the rectangle can then be expressed in terms of the position x of the lower
right-hand corner:

Notice that the values of x are to be found in the interval where the selected
corner of the rectangle lies.

Our goal is to find the absolute maximum value of the function

on the domain [0, 2].

Asxd = 2x24 - x2

0 … x … 2,

Length: 2x,  Height: 24 - x2, Area: 2x # 24 - x2 .

sx, 24 - x2d

x

y

0 2x–2 –x

2

x2 � y2 � 4

x, �4 � x2

FIGURE 4.36 The rectangle inscribed in
the semicircle in Example 3.
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4.5 Applied Optimization Problems 281

The derivative

is not defined when and is equal to zero when

Of the two zeros, and only lies in the interior of A’s do-
main and makes the critical-point list. The values of A at the endpoints and at this one crit-
ical point are

The area has a maximum value of 4 when the rectangle is high and
long.

EXAMPLE 4 Fermat’s Principle and Snell’s Law

The speed of light depends on the medium through which it travels, and is generally slower
in denser media.

Fermat’s principle in optics states that light travels from one point to another along a
path for which the time of travel is a minimum. Find the path that a ray of light will follow
in going from a point A in a medium where the speed of light is to a point B in a second
medium where its speed is 

Solution Since light traveling from A to B follows the quickest route, we look for a path
that will minimize the travel time. We assume that A and B lie in the xy-plane and that the
line separating the two media is the x-axis (Figure 4.37).

In a uniform medium, where the speed of light remains constant, “shortest time”
means “shortest path,” and the ray of light will follow a straight line. Thus the path from A
to B will consist of a line segment from A to a boundary point P, followed by another line
segment from P to B. Distance equals rate times time, so

The time required for light to travel from A to P is

From P to B, the time is

t2 =
PB
c2

=

2b2
+ sd - xd2

c2
.

t1 =
AP
c1

=

2a2
+ x2

c1
.

Time =

distance
rate .

c2 .
c1

2x = 222 unit
24 - x2

= 22 units

Endpoint values:  As0d = 0, As2d = 0.

 Critical-point value: A A22 B = 22224 - 2 = 4

x = 22x = -22,x = 22

 x2
= 2 or x = ;22.

 8 - 4x2
= 0

 -2x2
+ 2s4 - x2d = 0

 
-2x224 - x2

+ 224 - x2
= 0

x = 2

dA
dx

=

-2x224 - x2
+ 224 - x2

HISTORICAL BIOGRAPHY

Willebrord Snell van Royen
(1580–1626)
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FIGURE 4.37 A light ray refracted
(deflected from its path) as it passes
from one medium to a denser medium
(Example 4).
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The time from A to B is the sum of these:

This equation expresses t as a differentiable function of x whose domain is [0, d]. We want
to find the absolute minimum value of t on this closed interval. We find the derivative

In terms of the and in Figure 4.37,

If we restrict x to the interval then t has a negative derivative at and a
positive derivative at By the Intermediate Value Theorem for Derivatives (Section
3.1), there is a point where (Figure 4.38). There is only one such
point because is an increasing function of x (Exercise 54). At this point

This equation is Snell’s Law or the Law of Refraction, and is an important principle in
the theory of optics. It describes the path the ray of light follows.

Examples from Economics

In these examples we point out two ways that calculus makes a contribution to economics.
The first has to do with maximizing profit. The second has to do with minimizing average
cost.

Suppose that

The marginal revenue, marginal cost, and marginal profit when producing and selling x
items are

The first observation is about the relationship of p to these derivatives.
If r(x) and c(x) are differentiable for all and if has a

maximum value, it occurs at a production level at which Since 
implies that

r¿sxd - c¿sxd = 0 or r¿sxd = c¿sxd .

r¿sxd - c¿sxd,  p¿sxd = 0
p¿sxd =p¿sxd = 0.

p sxd = r sxd - csxdx 7 0,

 
dp
dx

= marginal profit .

 
dc
dx

= marginal cost ,

 
dr
dx

= marginal revenue,

 p sxd = rsxd - csxd = the profit from producing and selling x items.

 csxd = the cost of producing the x items

 rsxd = the revenue from selling x items

sin u1
c1

=

sin u2
c2

.

dt>dx
dt>dx = 0x0 H [0, d]

x = d .
x = 00 … x … d ,

dt
dx

=

sin u1
c1

-

sin u2
c2

.

u2angles  u1

dt
dx

=

x

c12a2
+ x2

-

d - x

c22b2
+ sd - xd2

.

t = t1 + t2 =

2a2
+ x2

c1
+

2b2
+ sd - xd2

c2
.
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FIGURE 4.38 The sign pattern of 
in Example 4.

dt>dx
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4.5 Applied Optimization Problems 283

Therefore

At a production level yielding maximum profit, marginal revenue equals mar-
ginal cost (Figure 4.39).

EXAMPLE 5 Maximizing Profit

Suppose that and where x represents thousands of
units. Is there a production level that maximizes profit? If so, what is it?

Solution Notice that and 

Set

The two solutions of the quadratic equation are

The possible production levels for maximum profit are x L 0.586 thousand units or x L

3.414 thousand units. The second derivative of is 
since is everywhere zero. Thus, which is negative at 
and positive at By the Second Derivative Test, a maximum profit occurs at
about (where revenue exceeds costs) and maximum loss occurs at about

The graph of r(x) is shown in Figure 4.40.x = 0.586.
x = 3.414

x = 2 - 22.
x = 2 + 22p–sxd = 6s2 - xdr–sxd

p–sxd = -c–sxdp sxd = rsxd - csxd

 x2 =

12 + 272
6

= 2 + 22 L 3.414.

 x1 =

12 - 272
6

= 2 - 22 L 0.586 and

 3x2
- 12x + 6 = 0

c¿sxd = r¿sxd . 3x2
- 12x + 15 = 9

c¿sxd = 3x2
- 12x + 15.r¿sxd = 9

csxd = x3
- 6x2

+ 15x ,rsxd = 9x

x

y

0

D
ol
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rs

Items produced

Break-even point

B

Cost c(x)

Local maximum for loss (minimum profit), c'(x) � r'(x)

Revenue r(x)

Maximum profit, c'(x) � r'(x)

FIGURE 4.39 The graph of a typical cost function starts concave down and later turns concave up. It
crosses the revenue curve at the break-even point B. To the left of B, the company operates at a loss. To
the right, the company operates at a profit, with the maximum profit occurring where 
Farther to the right, cost exceeds revenue (perhaps because of a combination of rising labor and
material costs and market saturation) and production levels become unprofitable again.

c¿sxd = r¿sxd .

x

y

0 2

Maximum
for profit

Local maximum for loss

c(x) � x3 � 6x2 � 15x

NOT TO SCALE

r(x) � 9x

2 � �2 2 � �2

FIGURE 4.40 The cost and revenue
curves for Example 5.
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EXAMPLE 6 Minimizing Costs

A cabinetmaker uses plantation-farmed mahogany to produce 5 furnishings each day.
Each delivery of one container of wood is $5000, whereas the storage of that material is
$10 per day per unit stored, where a unit is the amount of material needed by her to pro-
duce 1 furnishing. How much material should be ordered each time and how often should
the material be delivered to minimize her average daily cost in the production cycle be-
tween deliveries?

Solution If she asks for a delivery every x days, then she must order 5x units to have
enough material for that delivery cycle. The average amount in storage is approximately
one-half of the delivery amount, or 5 . Thus, the cost of delivery and storage for each
cycle is approximately

We compute the average daily cost c(x) by dividing the cost per cycle by the number of
days x in the cycle (see Figure 4.41).

As and as the average daily cost becomes large. So we expect a minimum
to exist, but where? Our goal is to determine the number of days x between deliveries that
provides the absolute minimum cost.

We find the critical points by determining where the derivative is equal to zero:

Of the two critical points, only lies in the domain of c(x). The critical-point value of
the average daily cost is

We note that c(x) is defined over the open interval with 
Thus, an absolute minimum exists at 

The cabinetmaker should schedule a delivery of of the exotic wood
every 14 days.

In Examples 5 and 6 we allowed the number of items x to be any positive real number.
In reality it usually only makes sense for x to be a positive integer (or zero). If we must
round our answers, should we round up or down?

EXAMPLE 7 Sensitivity of the Minimum Cost

Should we round the number of days between deliveries up or down for the best solution in
Example 6?

5s14d = 70 units
x = 2200 L 14.14 days.

c–sxd = 10000>x3
7 0.s0, q d

c A2200 B =

50002200
+ 252200 = 50022 L $707.11.

2200

 x = ;2200 L ;14.14.

 c¿sxd = -

5000
x2 + 25 = 0

x : q ,x : 0

csxd =

5000
x + 25x, x 7 0.

Cost per cycle = 5000   +    a5x
2
b    #    x   #    10

Cost per cycle = delivery costs + storage costs

x>2
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FIGURE 4.41 The average daily cost c(x)
is the sum of a hyperbola and a linear
function (Example 6).
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4.5 Applied Optimization Problems 285

Solution The average daily cost will increase by about $0.03 if we round down from
14.14 to 14 days:

and

On the other hand, and our cost would increase by 
if we round up. Thus, it is better that we round x down to 14 days.$707.11 = $1.22

$708.33 -cs15d = $708.33,

cs14d - cs14.14d = $707.14 - $707.11 = $0.03.

cs14d =

5000
14

+ 25s14d = $707.14
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