
292 Chapter 4: Applications of Derivatives

Indeterminate Forms and L’Hôpital’s Rule

John Bernoulli discovered a rule for calculating limits of fractions whose numerators and
denominators both approach zero or The rule is known today as l’Hôpital’s Rule,
after Guillaume de l’Hôpital. He was a French nobleman who wrote the first introductory
differential calculus text, where the rule first appeared in print.

Indeterminate Form 

If the continuous functions ƒ(x) and g (x) are both zero at then

cannot be found by substituting The substitution produces , a meaningless ex-
pression, which we cannot evaluate. We use as a notation for an expression known as
an indeterminate form. Sometimes, but not always, limits that lead to indeterminate
forms may be found by cancellation, rearrangement of terms, or other algebraic manipula-
tions. This was our experience in Chapter 2. It took considerable analysis in Section 2.4 to
find But we have had success with the limit

from which we calculate derivatives and which always produces the equivalent of 
when we substitute . L’Hôpital’s Rule enables us to draw on our success with deriva-
tives to evaluate limits that otherwise lead to indeterminate forms.

x = a
0>0

ƒ¿sad = lim
x:a

 
ƒsxd - ƒsad

x - a  ,

limx:0 ssin xd>x .

0>0 0>0x = a .

lim
x:a

  
ƒsxd
gsxd

x = a ,

0/0

+ q .

4.6
HISTORICAL BIOGRAPHY

Guillaume François
Antoine de l’Hôpital
(1661–1704)

THEOREM 6 L’Hôpital’s Rule (First Form)
Suppose that that and exist, and that 
Then

lim
x:a

  
ƒsxd
g sxd

=

ƒ¿sad
g¿sad

.

g¿sad Z 0.g¿sadƒ¿sadƒsad = gsad = 0,
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4.6 Indeterminate Forms and L’Hôpital’s Rule 293

Proof Working backward from and which are themselves limits, we have

EXAMPLE 1 Using L’Hôpital’s Rule

(a)

(b)

Sometimes after differentiation, the new numerator and denominator both equal zero at
as we see in Example 2. In these cases, we apply a stronger form of l’Hôpital’s Rule.x = a ,

lim
x:0

 
21 + x - 1

x =

1

221 + x
1

3
x = 0

=
1
2

lim
x:0

 
3x - sin x

x =

3 - cos x
1

`
x=0

= 2

 = lim
x:a

  
ƒsxd - ƒsad
g sxd - g sad

= lim
x:a

  
ƒsxd - 0

g sxd - 0
= lim

x:a
  

ƒsxd
g sxd

.

ƒ¿sad
g¿sad

=

lim
x:a

 
ƒsxd - ƒsad

x - a

lim
x:a

 
g sxd - g sad

x - a

= lim
x:a

  

ƒsxd - ƒsad
x - a

g sxd - g sad
x - a

g¿sad ,ƒ¿sadCaution
To apply l’Hôpital’s Rule to , divide
the derivative of ƒ by the derivative of
g. Do not fall into the trap of taking the
derivative of . The quotient to use is

not sƒ>gd¿ .ƒ¿>g¿ ,
ƒ>g

ƒ>g

THEOREM 7 L’Hôpital’s Rule (Stronger Form)
Suppose that that ƒ and g are differentiable on an open inter-
val I containing a, and that Then

assuming that the limit on the right side exists.

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

 ,

g¿sxd Z 0 on I if x Z a .
ƒsad = g sad = 0,

Before we give a proof of Theorem 7, let’s consider an example.

EXAMPLE 2 Applying the Stronger Form of L’Hôpital’s Rule

(a)

Still differentiate again.

Not limit is found.

(b)

limit is found.Not 
0
0

;= lim
x:0

 
cos x

6
=

1
6

Still 
0
0

= lim
x:0

 
sin x
6x

Still 
0
0

= lim
x:0

 
1 - cos x

3x2

0
0

lim
x:0

 
x - sin x

x3

0
0

;= lim
x:0

 
-s1>4ds1 + xd-3>2

2
= -

1
8

0
0

;= lim
x:0

 
s1>2ds1 + xd-1>2

- 1>2
2x

0
0

lim
x:0

 
21 + x - 1 - x>2

x2
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The proof of the stronger form of l’Hôpital’s Rule is based on Cauchy’s Mean Value
Theorem, a Mean Value Theorem that involves two functions instead of one. We prove
Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

294 Chapter 4: Applications of Derivatives

THEOREM 8 Cauchy’s Mean Value Theorem
Suppose functions ƒ and g are continuous on [a, b] and differentiable throughout
(a, b) and also suppose throughout (a, b). Then there exists a number c
in (a, b) at which

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

g¿sxd Z 0

Proof We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show
that For if g (b) did equal g (a), then the Mean Value Theorem would give

for some c between a and b, which cannot happen because in (a, b).
We next apply the Mean Value Theorem to the function

This function is continuous and differentiable where ƒ and g are, and 
Therefore, there is a number c between a and b for which When expressed in
terms of ƒ and g, this equation becomes

or

Notice that the Mean Value Theorem in Section 4.2 is Theorem 8 with 
Cauchy’s Mean Value Theorem has a geometric interpretation for a curve C defined

by the parametric equations and From Equation (2) in Section 3.5, the
slope of the parametric curve at t is given by

so is the slope of the tangent to the curve when The secant line joining
the two points (g (a), ƒ(a)) and (g (b), ƒ(b)) on C has slope

Theorem 8 says that there is a parameter value c in the interval (a, b) for which the slope of
the tangent to the curve at the point (g (c), ƒ(c)) is the same as the slope of the secant line
joining the points (g (a), ƒ(a)) and (g (b), ƒ(b)). This geometric result is shown in Figure
4.42. Note that more than one such value c of the parameter may exist.

We now prove Theorem 7.

ƒsbd - ƒsad
g sbd - g sad

.

t = c .ƒ¿scd>g¿scd

dy>dt

dx>dt
=

ƒ¿std
g¿std

,

y = ƒstd .x = g std

g sxd = x .

ƒ¿scd
g¿scd

=

ƒsbd - ƒsad
g sbd - g sad

.

F¿scd = ƒ¿scd -

ƒsbd - ƒsad
g sbd - g sad

 [ g¿scd] = 0

F¿scd = 0.
Fsbd = Fsad = 0.

Fsxd = ƒsxd - ƒsad -

ƒsbd - ƒsad
g sbd - g sad

 [ g sxd - g sad] .

g¿sxd Z 0

g¿scd =

g sbd - g sad
b - a

= 0

g sad Z g sbd .

0

y

(g(a), f (a))

(g(b), f (b))(g(c), f (c))

slope �
f (b) � f (a)
g(b) � g(a)

x

FIGURE 4.42 There is at least one value
of the parameter for
which the slope of the tangent to the curve
at (g (c), ƒ(c)) is the same as the slope of
the secant line joining the points 
(g (a), ƒ(a)) and (g (b), ƒ(b)).

t = c, a 6 c 6 b ,

HISTORICAL BIOGRAPHY

Augustin-Louis Cauchy
(1789–1857)
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4.6 Indeterminate Forms and L’Hôpital’s Rule 295

Proof of the Stronger Form of l’Hôpital’s Rule We first establish the limit equation for
the case The method needs almost no change to apply to and the combi-
nation of these two cases establishes the result.

Suppose that x lies to the right of a. Then and we can apply Cauchy’s
Mean Value Theorem to the closed interval from a to x. This step produces a number c be-
tween a and x such that

But so

As x approaches a, c approaches a because it always lies between a and x. Therefore,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to
the closed interval [x, a],  

Most functions encountered in the real world and most functions in this book satisfy
the conditions of l’Hôpital’s Rule.

x 6 a .

lim
x:a+

 
ƒsxd
g sxd

= lim
c:a+

 
ƒ¿scd
g¿scd

= lim
x:a+

 
ƒ¿sxd
g¿sxd

,

ƒ¿scd
g¿scd

=

ƒsxd
g sxd

.

ƒsad = g sad = 0,

ƒ¿scd
g¿scd

=

ƒsxd - ƒsad
g sxd - g sad

.

g¿sxd Z 0,

x : a-,x : a+ .

Using L’Hôpital’s Rule

To find

by l’Hôpital’s Rule, continue to differentiate ƒ and g, so long as we still get the
form at But as soon as one or the other of these derivatives is differ-
ent from zero at we stop differentiating. L’Hôpital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

x = a
x = a .0>0

lim
x:a

  
ƒsxd
gsxd

EXAMPLE 3 Incorrectly Applying the Stronger Form of L’Hôpital’s Rule

Not limit is found.

Up to now the calculation is correct, but if we continue to differentiate in an attempt to ap-
ply l’Hôpital’s Rule once more, we get

which is wrong. L’Hôpital’s Rule can only be applied to limits which give indeterminate
forms, and is not an indeterminate form.0>1

lim
x:0

 
1 - cos x

x + x2 = lim
x:0

 
sin x

1 + 2x
= lim

x:0
 
cos x

2
=

1
2

,

0
0

;= lim
x:0

 
sin x

1 + 2x
=

0
1

= 0

0
0

lim
x:0

 
1 - cos x

x + x2
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L’Hôpital’s Rule applies to one-sided limits as well, which is apparent from the proof of
Theorem 7.

EXAMPLE 4 Using L’Hôpital’s Rule with One-Sided Limits

(a)

Positive for 

(b)

Negative for  

Indeterminate Forms 

Sometimes when we try to evaluate a limit as by substituting we get an am-
biguous expression like or instead of . We first consider the
form 

In more advanced books it is proved that l’Hôpital’s Rule applies to the indeterminate
form as well as to . If and as then

provided the limit on the right exists. In the notation may be either finite or infi-
nite. Moreover may be replaced by the one-sided limits or 

EXAMPLE 5 Working with the Indeterminate Form 

Find

(a)

(b)

Solution

(a) The numerator and denominator are discontinuous at so we investigate the
one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open in-
terval with as an endpoint.

from the left

The right-hand limit is 1 also, with as the indeterminate form. There-
fore, the two-sided limit is equal to 1.

(b) lim
x: q

  
x - 2x2

3x2
+ 5x

= lim
x: q

  
1 - 4x
6x + 5

= lim
x: q

  
-4
6

= -
2
3

.

s - q d>s - q d

= lim
x: sp>2d-

 
sec x tan x

sec2 x
= lim

x: sp>2d-

 sin x = 1

q

q
lim

x: sp>2d-

 
sec x

1 + tan x

x = p>2
x = p>2,

lim
x: q

  
x - 2x2

3x2
+ 5x

lim
x:p>2  

sec x
1 + tan x

q>q
x : a- .x : a+x : a

x : a, a

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

x : a ,g sxd : ; qƒsxd : ; q0>0q>q
q>q .

0>0q - q ,q>q , q # 0,
x = ax : a

ˆ>ˆ , ˆ # 0, ˆ  � ˆ

x 6 0 .= lim
x:0-

 
cos x

2x
= - q

0
0

lim
x:0-

 
sin x
x2

x 7 0 .= lim
x:0+

 
cos x

2x
= q

0
0

lim
x:0+

 
sin x
x2

296 Chapter 4: Applications of Derivatives

Recall that and mean the same
thing.

+ qq
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4.6 Indeterminate Forms and L’Hôpital’s Rule 297

Next we turn our attention to the indeterminate forms and Some-
times these forms can be handled by using algebra to convert them to a or 
form. Here again we do not mean to suggest that or is a number. They are
only notations for functional behaviors when considering limits. Here are examples of how
we might work with these indeterminate forms.

EXAMPLE 6 Working with the Indeterminate Form 

Find

Solution

Let 

EXAMPLE 7 Working with the Indeterminate Form 

Find

Solution If then and

Similarly, if then and

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

Common denominator is x sin x

Then apply l’Hôpital’s Rule to the result:

Still 

 = lim
x:0

  
sin x

2 cos x - x sin x
=

0
2

= 0.

0
0

 = lim
x:0

  
1 - cos x

sin x + x cos x

0
0

 lim
x:0
a 1

sin x
-

1
x b = lim

x:0
  
x - sin x

x sin x

1
sin x

-
1
x =

x - sin x
x sin x

1
sin x

-
1
x : - q - s - q d = - q + q .

sin x : 0-x : 0- ,

1
sin x

-
1
x : q - q .

sin x : 0+x : 0+ ,

lim
x:0
a 1

sin x
-

1
x b .

q - q

 = 1

h = 1>x .= lim
h:0+

a1
h

 sin hb
q # 0lim

x: q

ax sin 
1
x b

lim
x: q

ax sin 
1
x b

q # 0

q - qq # 0
q>q0>0

q - q .q # 0
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